Crystal Chemistry and Thermal Behavior of Fe-Carpholite from the Pollino Massif, Southern Italy

2021 ◽  
Vol 106 (1) ◽  
pp. 123-134
Author(s):  
Ernesto Mesto ◽  
Salvatore Laurita ◽  
Maria Lacalamita ◽  
Rosa Sinisi ◽  
Giovanna Rizzo ◽  
...  

Abstract The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, mRaman spectroscopy, thermal analysis, room-temperature single-crystal X-ray diffraction, and high-temperature X-ray powder diffraction was employed. Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation. Structure refinements from single-crystal X-ray diffraction confirm that carpholite crystallizes in the Ccce space group. Anisotropic refinements converged at 2.3 ≤ R (%) ≤ 2.6 and yielded unit-cell parameters a ~13.77 Å, b ~20.16 Å, c ~5.11 Å, and V ~1419 Å3. An XFe [i.e., the molar fraction Fe2+/(Mg+Fe2++Mn)] of ~0.6 was derived from the refined occupancy at the M1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M1, M2, and M3 octahedra. mRaman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200–1200 cm–1 region, a strong peak at 3630 cm–1 and a weak peak at 3593 cm–1, the latter two of which account for the presence of two independent OH groups, as also revealed by the X-ray structure refinement. The TG curve indicates a total mass loss of 15.6% in the temperature range 30–1000 °C, and the DTA curve shows a broad endothermic band at ~400 °C, extending up to ~650 °C, and weak exothermic peaks at ~700 and 750 °C. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X-ray powder diffraction from 30 to 1105 °C revealed no significant changes in XRD patterns from 30 to 355 °C but reflection splittings from 380 °C due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range 380–580 °C, whereas only the deprotonated phase is observed up to 630 °C. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At 1105 °C, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.

Author(s):  
Rimma S. Bubnova ◽  
Stanislav K. Filatov

AbstractThe paper presents a brief review of the present state of high-temperature borate crystal chemistry. This review summarizes the results of high- and low-temperature single crystal X-ray diffraction studies for more than 10 borate structures and high-temperature powder Xray diffraction data for about 65 borates. Thermal behavior of their crystal structures, thermal expansion, polymorphic transitions and their relationship to borate glasses are presented. These studies allow to formulate the basic principles of high-temperature borate crystal chemistry and to reveal the regularities of thermal behavior of borates. On heating, the BO


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


1997 ◽  
Vol 53 (6) ◽  
pp. 861-869 ◽  
Author(s):  
C. D. Ling ◽  
J. G. Thompson ◽  
S. Schmid ◽  
D. J. Cookson ◽  
R. L. Withers

The structures of the layered intergrowth phases SbIIISb^{\rm V}_xAl-xTiO6 (x \simeq 0, A = Ta, Nb) have been refined by the Rietveld method, using X-ray diffraction data obtained using a synchrotron source. The starting models for these structures were derived from those of Sb^{\rm III}_3Sb^{\rm V}_xA 3−xTiO14 (x = 1.26, A = Ta and x = 0.89, A = Nb), previously solved by single-crystal X-ray diffraction. There were no significant differences between the derived models and the final structures, validating the approach used to obtain the models and confirming that the n = 1 and n = 3 members of the family, Sb^{\rm III}_nSb^{\rm V}_xA n−xTiO4n+2 are part of a structurally homologous series.


Sign in / Sign up

Export Citation Format

Share Document