Dasytricha Dominance in Surti Buffalo Rumen Revealed by 18S rRNA Sequences and Real-Time PCR Assay

2011 ◽  
Vol 63 (3) ◽  
pp. 281-288 ◽  
Author(s):  
K. M. Singh ◽  
A. K. Tripathi ◽  
P. R. Pandya ◽  
D. N. Rank ◽  
R. K. Kothari ◽  
...  
2015 ◽  
Vol 53 (7) ◽  
pp. 2251-2257 ◽  
Author(s):  
Martina I. Lefterova ◽  
Indre Budvytiene ◽  
Johanna Sandlund ◽  
Anna Färnert ◽  
Niaz Banaei

Malaria is the leading identifiable cause of fever in returning travelers. AccuratePlasmodiumspecies identification has therapy implications forP. vivaxandP. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay forPlasmodiumspecies identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% forP. falciparum(20/21 positives detected) and 100% for thePlasmodiumgenus (52/52),P. vivax(20/20),P. ovale(9/9), andP. malariae(6/6). The sensitivity of theP. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% forP. vivax(49/52) and 100% forP. falciparum(51/51),P. ovale(62/62),P. malariae(69/69), andP. knowlesi(52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixedP. falciparumandP. ovaleinfection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitivePlasmodiumspecies identification shortly after malaria diagnosis by microscopy.


2016 ◽  
Vol 55 (2) ◽  
pp. 180-184 ◽  
Author(s):  
Solène Le Gal ◽  
Florence Robert-Gangneux ◽  
Yann Pépino ◽  
Sorya Belaz ◽  
Céline Damiani ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Tanja Hoffmann ◽  
Andreas Hahn ◽  
Jaco J. Verweij ◽  
Gérard Leboulle ◽  
Olfert Landt ◽  
...  

This study aimed to assess standard and harsher nucleic acid extraction schemes for diagnostic helminth real-time PCR approaches from stool samples. A standard procedure for nucleic acid extraction from stool and a procedure including bead-beating as well as proteinase K digestion were compared with group-, genus-, and species-specific real-time PCR assays targeting helminths and nonhelminth pathogens in human stool samples. From 25 different in-house and commercial helminth real-time PCR assays applied to 77 stool samples comprising 67 historic samples and 10 external quality assessment scheme samples positively tested for helminths, higher numbers of positive test results were observed after bead-beating-based nucleic acid extraction for 5/25 (20%) real-time PCR assays irrespective of specificity issues. Lower cycle threshold values were observed for one real-time PCR assay after the standard extraction scheme, and for four assays after the bead-beating-based scheme. Agreement between real-time PCR results after both nucleic acid extraction strategies according to Cohen’s kappa ranged from poor to almost perfect for the different assays. Varying agreement was observed in eight nonhelminth real-time PCR assays applied to 67 historic stool samples. The study indicates highly variable effects of harsh nucleic acid extraction approaches depending on the real-time PCR assay used.


Sign in / Sign up

Export Citation Format

Share Document