Deletion of Invasion Protein B in Salmonella enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence

2015 ◽  
Vol 71 (6) ◽  
pp. 687-692 ◽  
Author(s):  
Songbiao Chen ◽  
Chunjie Zhang ◽  
Chengshui Liao ◽  
Jing Li ◽  
Chuan Yu ◽  
...  
2002 ◽  
Vol 39 (6) ◽  
pp. 712-720 ◽  
Author(s):  
D. K. Meyerholz ◽  
T. J. Stabel ◽  
M. R. Ackermann ◽  
S. A. Carlson ◽  
B. D. Jones ◽  
...  

Salmonella enterica serovar Typhimurium is an important intestinal pathogen in swine. This study was performed to document the early cellular invasion of Salmonella serovar Typhimurium in swine ileum. Ileal gut-loops were surgically prepared in ten 4- to 5-week-old mixed-breed pigs and inoculated for 0-60 minutes. Loops were harvested and prepared for both scanning and transmission electron microscopy (SEM and TEM, respectively). Preferential bacterial adherence to microfold cells (M cells) was seen within 5 minutes, and by 10 minutes bacterial invasion of the apical membrane was seen in M cells, goblet cells, and enterocytes. This multicellular invasion was observed throughout the course of infection. In addition, SEM revealed a specific affinity of Salmonella serovar Typhimurium to sites of cell extrusion. Using TEM, bacteria in these areas were focused in the crevices formed by the extruding cell and the adjacent cells and in the cytoplasm immediately beneath the extruding cell. Our results suggest that early cellular invasion by Salmonella serovar Typhimurium is nonspecific and rapid in swine. Furthermore, the combination of SEM and TEM data suggests that Salmonella serovar Typhimurium may use sites of cell extrusion as an additional mechanism for early invasion.


2003 ◽  
Vol 71 (5) ◽  
pp. 2885-2891 ◽  
Author(s):  
Alison K. Criss ◽  
James E. Casanova

ABSTRACT Salmonella enterica serovar Typhimurium can infect epithelial cells via the basolateral surface after breaching the intestinal epithelium, yet little is known about this process. Here, we show that actin polymerization driven by the Arp2/3 complex is critical to both basolateral and apical bacterial invasion of polarized MDCK cells. While there is also a dependence upon toxin B-sensitive Rho GTPases, none of the four GTPases known to be activated by S. enterica serovar Typhimurium SopE are individually required for basolateral internalization. These results underscore that the specific factors required for Salmonella invasion differ between membrane domains of polarized epithelia.


2004 ◽  
Vol 72 (3) ◽  
pp. 1364-1373 ◽  
Author(s):  
Akiko Takaya ◽  
Toshifumi Tomoyasu ◽  
Hidenori Matsui ◽  
Tomoko Yamamoto

ABSTRACT Salmonella enterica serovar Typhimurium, similar to various facultative intracellular pathogens, has been shown to respond to the hostile conditions inside macrophages of the host organism by inducing stress proteins, such as DnaK. DnaK forms a chaperone machinery with the cochaperones DnaJ and GrpE. To elucidate the role of the DnaK chaperone machinery in the pathogenesis of S. enterica serovar Typhimurium, we first constructed an insertional mutation in the dnaK-dnaJ operon of pathogenic strain χ3306. The DnaK/DnaJ-depleted mutant was temperature sensitive for growth, that is, nonviable above 39°C. We then isolated a spontaneously occurring revertant of the dnaK-dnaJ-disrupted mutant at 39°C and used it for infection of mice. The mutant lost the ability to cause a lethal systemic disease in mice. The impaired ability for virulence was restored when a functional copy of the dnaK-dnaJ operon was provided, suggesting that the DnaK/DnaJ chaperone machinery is required by Salmonella for the systemic infection of mice. This result also indicates that with respect to the DnaK/DnaJ chaperone machinery, the cellular requirements for growth at a high temperature are not identical to the cellular requirements for the pathogenesis of Salmonella. Macrophage survival assays revealed that the DnaK/DnaJ-depleted mutant could not survive or proliferate at all within macrophages. Of further interest are the findings that the mutant could neither invade cultured epithelial cells nor secrete any of the invasion proteins encoded within Salmonella pathogenicity island 1. This is the first time that the DnaK/DnaJ chaperone machinery has been shown to be involved in bacterial invasion of epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document