stress proteins
Recently Published Documents


TOTAL DOCUMENTS

1149
(FIVE YEARS 129)

H-INDEX

86
(FIVE YEARS 6)

2022 ◽  
Vol 23 (1) ◽  
pp. 572
Author(s):  
Chengpeng Wang ◽  
Yunzhuan Zhou ◽  
Xi Yang ◽  
Bing Zhang ◽  
Fuxiang Xu ◽  
...  

Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Laura Drago ◽  
Diana Ferro ◽  
Rigers Bakiu ◽  
Loriano Ballarin ◽  
Gianfranco Santovito

Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions, such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here, we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, -3, and -4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Guidenn Sulbarán ◽  
Giovani C. Verissimo da Costa ◽  
Sandra Losada ◽  
José M. Peralta ◽  
Italo M. Cesari

The S. mansoni adult worm n-butanol extract (Sm-AWBE) has been previously shown to contain specific S. mansoni antigens that have been used for immunodiagnosis of schistosomiasis in solid phase alkaline phosphatase immunoassay (APIA) and western blot (WB) analyses. Sm-AWBE was also used in immunoprotection studies against a fatal live-cercariae challenge in experimental mouse vaccination (~43% protection). The Sm-AWBE fraction was prepared by mixing adult worm membranous suspensions with aqueous-saturated n-butanol, centrifuging and recovering n-butanol-resistant proteins in the aqueous phase. Here we report a preliminary identification of Sm-AWBE protein components as revealed from a qualitative proteomic study after processing Sm-AWBE by 1D-gel electrophoresis, in-gel and in-solution tryptic digestions, and mass spectrometry analyses. We identified 33 proteins in Sm-AWBE, all previously known S. mansoni proteins and antigens; among them, immunomodulatory proteins and proteins mostly involved in host–parasite interactions. About 81.8% of the identified Sm-AWBE proteins are antigenic. STRING analysis showed a set of Sm-AWBE proteins configuring a small network of interactive proteins and a group of proteins without interactions. Functional groups of proteins included muscle contraction, antioxidant, GPI-anchored phosphoesterases, regulatory 14-3-3, various enzymes and stress proteins. The results widen the possibilities to design novel antigen combinations for better diagnostic and immunoprotective strategies for schistosomiasis control.


Author(s):  
Anchal Deshwal ◽  
Navneet Kaur ◽  
Pankaj Mehta ◽  
Neelam Thakur

Cadmium is a toxic transition heavy metal with perilous effects on the health of animals and humans by indefinite ways. It is one of the asserted carcinogens group given by IARC. There are jillion ways by which cadmium may be prevalent in the environment as the pollutant or may be through contaminated water, food or by smoking. Cadmium poisoning may be seen in the form of itai itai disease. It came in knowledge after its outbreak in Japan in 1960s after the consumption of cadmium-contaminated rice as a food source. The exposure and accumulation of cadmium may lead to numerous forms of cancer, including breast, lung, prostate and nasopharynx, pancreas and kidney cancers. It expresses its effect by formation of stress proteins that depends on the amount of exposure and time of exposure. It had shown effects on the functioning of mitochondria resulting in formation of less energy or ATP (adenosine triphosphate) and more ROS. Other effects are cell apoptosis and inhibit growth, division and carcinogenic activity in cells. The current study has been done to understand the various effects scrutinised by numerous workers.


2021 ◽  
Vol 3 ◽  
Author(s):  
Ayman EL Sabagh ◽  
Sonia Mbarki ◽  
Akbar Hossain ◽  
Muhammad Aamir Iqbal ◽  
Mohammad Sohidul Islam ◽  
...  

Plant growth regulators are naturally biosynthesized chemicals in plants that influence physiological processes. Their synthetic analogous trigger numerous biochemical and physiological processes involved in the growth and development of plants. Nowadays, due to changing climatic scenario, numerous biotic and abiotic stresses hamper seed germination, seedling growth, and plant development leading to a decline in biological and economic yields. However, plant growth regulators (PGRs) can potentially play a fundamental role in regulating plant responses to various abiotic stresses and hence, contribute to plant adaptation under adverse environments. The major effects of abiotic stresses are growth and yield disturbance, and both these effects are directly overseen by the PGRs. Different types of PGRs such as abscisic acid (ABA), salicylic acid (SA), ethylene (ET), and jasmonates (JAs) are connected to boosting the response of plants to multiple stresses. In contrast, PGRs including cytokinins (CKs), gibberellins (GAs), auxin, and relatively novel PGRs such as strigolactones (SLs), and brassinosteroids (BRs) are involved in plant growth and development under normal and stressful environmental conditions. Besides, polyamines and nitric oxide (NO), although not considered as phytohormones, have been included in the current review due to their involvement in the regulation of several plant processes and stress responses. These PGRs are crucial for regulating stress adaptation through the modulates physiological, biochemical, and molecular processes and activation of the defense system, upregulating of transcript levels, transcription factors, metabolism genes, and stress proteins at cellular levels. The current review presents an acumen of the recent progress made on different PGRs to improve plant tolerance to abiotic stress such as heat, drought, salinity, and flood. Moreover, it highlights the research gaps on underlying mechanisms of PGRs biosynthesis under stressed conditions and their potential roles in imparting tolerance against adverse effects of suboptimal growth conditions.


Author(s):  
Laura Drago ◽  
Diana Ferro ◽  
Rigers Bakiu ◽  
Loriano Ballarin ◽  
Gianfranco Santovito

Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring the aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, 3, and 4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ebraheem Alzahrani ◽  
Wajdi Alghamdi ◽  
Malik Zaka Ullah ◽  
Yaser Daanial Khan

AbstractProteins are a vital component of cells that perform physiological functions to ensure smooth operations of bodily functions. Identification of a protein's function involves a detailed understanding of the structure of proteins. Stress proteins are essential mediators of several responses to cellular stress and are categorized based on their structural characteristics. These proteins are found to be conserved across many eukaryotic and prokaryotic linkages and demonstrate varied crucial functional activities inside a cell. The in-vivo, ex vivo, and in-vitro identification of stress proteins are a time-consuming and costly task. This study is aimed at the identification of stress protein sequences with the aid of mathematical modelling and machine learning methods to supplement the aforementioned wet lab methods. The model developed using Random Forest showed remarkable results with 91.1% accuracy while models based on neural network and support vector machine showed 87.7% and 47.0% accuracy, respectively. Based on evaluation results it was concluded that random-forest based classifier surpassed all other predictors and is suitable for use in practical applications for the identification of stress proteins. Live web server is available at http://biopred.org/stressprotiens, while the webserver code available is at https://github.com/abdullah5naveed/SRP_WebServer.git


2021 ◽  
Vol 22 (19) ◽  
pp. 10878
Author(s):  
Priscilla Masamba ◽  
Abidemi Paul Kappo

Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Olga V. Grebeneva ◽  
Dina H. Rybalkina ◽  
Lyazat K. Ibrayeva ◽  
Almagul Zh. Shadetova ◽  
Elena A. Drobchenko ◽  
...  

Our research project was aimed at studying the effects of an electromagnetic field of industrial frequency (EMF-IF) on employees of an energy company in Kazakhstan. Material and Methods — The object of our study was the health status of electricians (morbidity with temporary disability – MTD), engaged in the maintenance of power lines, relay protection systems and substations (220 and 500 kV) at an energy enterprise in Kazakhstan. The interrelation and dependence of the intensive MTD indicators on the hygienic factors at the workplace were determined, and the risks were calculated from the obtained data. Results — Unfavorable workplace conditions caused an increase in disorders of the musculoskeletal system (up to 77%), blood circulation (up to 65%), nervous system (up to 52%), skin diseases (up to 46.4%), as well as the manifold rise of the likelihood of neoplasm growth and respiratory diseases. For electricians, the relationships between the nervous system disorders (r=0.792), the circulatory system diseases (r=0.573), the musculoskeletal system ailments (r=0.672) and the EMF-IF parameters were discovered. At the same time, the dependence of the incidence rates of various diseases in workers on EMF, as well as moderate to high computed relative risks, implied the occupational genesis of worklace ailments: for nervous system – R2=0.628, cardiovascular system – R2=0.709, skin – R2=0.729, and musculoskeletal system – R2=0.413. Conclusion — As preventive measures for electricians, we recommended to wear individual exposure meters, to limit work in contact with EMF, to include an oncologist in the medical commission, and for trainees, to screen for oxidative stress proteins and chaperone proteins to exclude a predisposition to oncogenesis.


2021 ◽  
Author(s):  
Piotr Bernatowicz ◽  
Piotr Dawidowicz ◽  
Joanna Pijanowska

AbstractHabitat selection behavior by aquatic and terrestrial animals is influenced by both abiotic (e.g., temperature) and biotic (e.g., threat from predators) environmental factors. In this study, the mechanisms underlying the variability in behavior of habitat selection of Daphnia under environmental stress were examined. Experiments were conducted using five Daphnia clones with different environmental preferences and, consequently, with a different width of the reaction norm. These clones also showed variation in their constitutive levels of stress-related heat shock proteins (HSP60, HSP70 and HSP90), but none of the tested stress factors had any direct effect on their expression. However, behavioral plasticity was significantly positively correlated with the constitutive level of HSP70. It is likely that animals with a high constitutive HSP70 level can cope better with sudden changes in environment conditions that they experience, e.g., during vertical migrations. In contrast, non-migrating animals with low HSP levels do not allocate energy to the synthesis of stress proteins and have a narrow range of behavioral plasticity.


Sign in / Sign up

Export Citation Format

Share Document