Genome Shuffling of Bacillus velezensis for Enhanced Surfactin Production and Variation Analysis

2019 ◽  
Vol 77 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Liang Chen ◽  
Xing-yu Chong ◽  
Ying-Ying Zhang ◽  
Yang-yong Lv ◽  
Yuan-Sen Hu
2018 ◽  
Vol 45 (12) ◽  
pp. 1033-1044 ◽  
Author(s):  
Junqiang Wang ◽  
Rongjun Guo ◽  
Wenchao Wang ◽  
Guizhen Ma ◽  
Shidong Li

2020 ◽  
Vol 104 (23) ◽  
pp. 10059-10074
Author(s):  
Zhao Liang ◽  
Jun-Qing Qiao ◽  
Ping-Ping Li ◽  
Lu-Lu Zhang ◽  
Zi-Xuan Qiao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michelle S. M. Li ◽  
David A. Piccoli ◽  
Tim McDowell ◽  
Jacqueline MacDonald ◽  
Justin Renaud ◽  
...  

Abstract Background Microorganisms, including Bacillus species are used to help control plant pathogens, thereby reducing reliance on synthetic pesticides in agriculture. Bacillus velezensis strain 1B-23 has been shown to reduce symptoms of bacterial disease caused by Clavibacter michiganensis subsp. michiganensis in greenhouse-grown tomatoes, with in vitro studies implicating the lipopeptide surfactin as a key antimicrobial. While surfactin is known to be effective against many bacterial pathogens, it is inhibitory to a smaller proportion of fungi which nonetheless cause the majority of crop diseases. In addition, knowledge of optimal conditions for surfactin production in B. velezensis is lacking. Results Here, B. velezensis 1B-23 was shown to inhibit in vitro growth of 10 fungal strains including Candida albicans, Cochliobolus carbonum, Cryptococcus neoformans, Cylindrocarpon destructans Fusarium oxysporum, Fusarium solani, Monilinia fructicola, and Rhizoctonia solani, as well as two strains of C. michiganensis michiganensis. Three of the fungal strains (C. carbonum, C. neoformans, and M. fructicola) and the bacterial strains were also inhibited by purified surfactin (surfactin C, or [Leu7] surfactin C15) from B. velezensis 1B-23. Optimal surfactin production occurred in vitro at a relatively low temperature (16 °C) and a slightly acidic pH of 6.0. In addition to surfactin, B. velenzensis also produced macrolactins, cyclic dipeptides and minor amounts of iturins which could be responsible for the bioactivity against fungal strains which were not inhibited by purified surfactin C. Conclusions Our study indicates that B. velezensis 1B-23 has potential as a biocontrol agent against both bacterial and fungal pathogens, and may be particularly useful in slightly acidic soils of cooler climates.


2013 ◽  
Vol 1 (2) ◽  
pp. 109-120
Author(s):  
Jessica Avenido ◽  
◽  
Jesse Susada ◽  
Efren Barabat ◽  
◽  
...  
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Nicole Danielle Osier ◽  
George M Garrity
Keyword(s):  

2020 ◽  
Author(s):  
K H Jyothiprakash ◽  
Agniv Saha ◽  
Arihant Kumar Patawari ◽  
K. N. Seetharamu

Author(s):  
Santhosh K. M ◽  
S. Prashanth

Urban development, agricultural runoff and industrialization have contributed pollution loading on the environment.  In this study Hemavathi river water from a stretch from its origin point to its sangama was studied for pollution load by determining parameters of water quality like pH, Alkalinity,  Ca, Mg, Nitrate, TDS, BOD, COD , and the results were compared with WHO and BIS standards to draw final conclusion on the quality of water.


Author(s):  
Mladen Petres ◽  
Marta Loc ◽  
Mila Grahovac ◽  
Vera Stojsin ◽  
Dragana Budakov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document