The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum

2019 ◽  
Vol 65 (4) ◽  
pp. 981-994 ◽  
Author(s):  
Wuyun Lv ◽  
Jinjin Wu ◽  
Zhe Xu ◽  
Han Dai ◽  
Zhonghua Ma ◽  
...  
Author(s):  
Yuanye Zhu ◽  
Yuanshuai Zhang ◽  
Yabing Duan ◽  
Dongya Shi ◽  
Yi ping Hou ◽  
...  

The plant pathogen Fusarium graminearum contains two α-tubulin (α 1 and α 2 ) isotypes and two β-tubulin isotypes (β 1 and β 2 ). The functional roles of these tubulins in microtubule assembly are not clear. Previous studies showed that α 1 - and β 2 -tubulin deletion mutants showed severe growth defects and hypersensitivity to carbendazim, which have not been well explained. Here, we investigated the interaction between α- and β-tubulin of F. graminearum . Co-localization experiments demonstrated that β 1 - and β 2 -tubulin are co-localized. Co-immunoprecipitation experiment suggested that β 1 -tubulin binds to both α 1 - and α 2 -tubulin and β 2 -tubulin can also bind to α 1 - or α 2 -tubulin. Interestingly, deletion of α 1 -tubulin increased the interaction between β 2 -tubulin and α 2 -tubulin. Microtubule observation assays showed that deletion of α 1 -tubulin completely disrupted β 1 -tubulin-containing microtubules and significantly decreased β 2 -tubulin-containing microtubules. Deletion of α 2 -, β 1 - or β 2 -tubulin respectively had no obvious effect on the microtubule cytoskeleton. However, microtubules in α 1 - and β 2 -tubulin deletion mutants were easily depolymerized in the presence of carbendazim. The sexual reproduction assay indicates that α 1 - and β 1 -tubulin deletion mutants could not produce asci and ascospores. These results implied that α 1 -tubulin may be essential for the microtubule cytoskeleton. However, our Δα 1 -2×α 2 mutant (α 1 -tubulin deletion mutant containing two copies of α 2 -tubulin) exhibited a normal microtubule network, growth and sexual reproduction. Interestingly, the Δα 1 -2×α 2 mutant was still hypersensitive to carbendazim. In addition, both β 1 -tubulin and β 2 -tubulin were found to bind the mitochondrial outer membrane voltage-dependent anion channel (VDAC), indicating they could regulate the function of VDAC. Importance: In this study, we found that F. graminearum contains four different α-/β-tubulin heterodimers (α 1 -β 1 , α 1 -β 2 , α 2 -β 1 and α 2 -β 2 ) and they assemble together into a single microtubule. Moreover, α 1 -, α 2 -tubulins are functionally interchangeable in microtubule assembly, vegetative growth and sexual reproduction. These results provide more insights into functional roles of different tubulins of F. graminearum which could be helpful for purification of tubulin heterodimers and developing new tubulin-binding agents.


2011 ◽  
Vol 24 (1) ◽  
pp. 118-128 ◽  
Author(s):  
Yang Wang ◽  
Wende Liu ◽  
Zhanming Hou ◽  
Chenfang Wang ◽  
Xiaoying Zhou ◽  
...  

Fusarium head blight or scab caused by Fusarium graminearum is an important disease of wheat and barley. The pathogen not only causes severe yield losses but also contaminates infested grains with mycotoxins. In a previous study, we identified several pathogenicity mutants by random insertional mutagenesis. One of these mutants was disrupted in the ZIF1 gene, which encodes a b-ZIP transcription factor unique to filamentous ascomycetes. The Δzif1 mutant generated by gene replacement was significantly reduced in deoxynivalenol (DON) production and virulence on flowering wheat heads. It was defective in spreading from inoculated florets to the rachis and other spikelets. Deletion of the ZIF1 ortholog MoZIF1 in the rice blast fungus also caused reductions in virulence and in invasive growth. In addition, the Δzif1 mutant is defective in sexual reproduction. Although it had normal male fertility, when selfed or mated as the female in outcrosess, the Δzif1 mutant produced small, pigmented perithecia that were sterile (lack of asci and ascospores), suggesting a female-specific role for ZIF1 during fertilization or ascus development. Similar female-specific defects in sexual reproduction were observed in the ΔMozif1 mutant. When mated as the female, the ΔMozif1 perithecia failed to develop long necks and asci or ascospores. The ZIF1 gene is well conserved in filamentous ascomycetes, particularly in the b-ZIP domain, which is essential for its function. Expression of ZIF1 in Magnaporthe oryzae complemented the defects of the ΔMozif1 mutant. These results indicate that this b-ZIP transcription factor is functionally conserved in these two fungal pathogens for plant infection and sexual reproduction.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrícia Alves de Castro ◽  
Clara Valero ◽  
Jéssica Chiaratto ◽  
Ana Cristina Colabardini ◽  
Lakhansing Pardeshi ◽  
...  

ABSTRACT The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (never in sexual development). In previous studies with Aspergillus nidulans, it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the nsdC homologue in the opportunistic human pathogen A. fumigatus was investigated. NsdC was again found to be essential for sexual development, with deletion of the nsdC gene in both MAT1-1 and MAT1-2 mating partners of a cross leading to complete loss of fertility. However, a functional copy of nsdC in one mating partner was sufficient to allow sexual reproduction. Deletion of nsdC also led to decreased vegetative growth and allowed conidiation in liquid cultures, again consistent with previous findings. However, NsdC in A. fumigatus was shown to have additional biological functions including response to calcium stress, correct organization of cell wall structure, and response to the cell wall stressors. Furthermore, virulence and host immune recognition were affected. Gene expression studies involving chromatin immunoprecipitation (ChIP) of RNA polymerase II (PolII) coupled to next-generation sequencing (Seq) revealed that deletion of nsdC resulted in changes in expression of over 620 genes under basal growth conditions. This demonstrated that this transcription factor mediates the activity of a wide variety of signaling and metabolic pathways and indicates that despite the naming of the gene, the promotion of sexual reproduction is just one among multiple roles of NsdC. IMPORTANCE Aspergillus fumigatus is an opportunistic human fungal pathogen and the main causal agent of invasive aspergillosis, a life-threatening infection especially in immunocompromised patients. A. fumigatus can undergo both asexual and sexual reproductive cycles, and the regulation of both cycles involves several genes and pathways. Here, we have characterized one of these genetic determinants, the NsdC transcription factor, which was initially identified in a screen of transcription factor null mutants showing sensitivity when exposed to high concentrations of calcium. In addition to its known essential roles in sexual reproduction and control of growth rate and asexual reproduction, we have shown in the present study that A. fumigatus NsdC transcription factor has additional previously unrecognized biological functions including calcium tolerance, cell wall stress response, and correct cell wall organization and functions in virulence and host immune recognition. Our results indicate that NsdC can play novel additional biological functions not directly related to its role played during sexual and asexual processes.


2015 ◽  
Vol 83 ◽  
pp. 92-102 ◽  
Author(s):  
Jinjin Wu ◽  
Yuting Liu ◽  
Wuyun Lv ◽  
Xiaofeng Yue ◽  
Yawei Que ◽  
...  

2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.


2020 ◽  
Vol 5 (1) ◽  
pp. 20-28
Author(s):  
N. A. Davidovich ◽  
O. I. Davidovich

Distribution of diatom algae is limited by their tolerance to environmental factors. Although a genus Toxarium has been evolving for more than 100 million years, it is represented by only two species. Toxarium undulatum is widely spread in tropical and subtropical seas, and it can be also found in the Black Sea, the salinity of which is twice lower than the oceanic one. Ecological and psychological characteristics research of this species is of great interest in terms of its relationship to salinity. T. undulatum clonal cultures were sampled in the Donuzlav Lake connected to the Black Sea (southwest of the Crimean Peninsula) and on Gran Canaria coast (Canary Islands archipelago). Experiments on the salinity tolerance limits showed, that the Black Sea clones were viable in a range of at least 30 ‰ (12 to 42 ‰). The same wide range of salinity tolerance with slightly higher values was observed among oceanic clones of this species. Optima of vegetative growth and sexual reproduction were determined. Optima of the Black Sea clones appeared to be 27.8 and 27.2 ‰, respectively, which was significantly higher than salinity observed in population habitat. Similar higher optima of vegetative growth and sexual reproduction, compared with those salinity values, at which natural population developed, were observed for a number of other Black Sea diatoms, which proved their oceanic (Mediterranean) origin. It was concluded that T. undulatum, along with other species, began to populate the Black Sea basin about seven thousand years ago after Mediterranean Sea water started to flow into the freshened Novoevksinsky Sea-Lake through the Bosporus Strait. However, the evolution rate did not allow bringing physiological and ecological characteristics of the species studied into full agreement with environmental conditions. Oceanic origin is evidently seen in its physiological reactions to salinity. Possibility of speciation due to settlement of the Black Sea with oceanic species is discussed.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66980 ◽  
Author(s):  
Qian Zheng ◽  
Rui Hou ◽  
Juanyu ◽  
Zhang ◽  
Jiwen Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document