scholarly journals The cAMP-PKA Pathway Regulates Growth, Sexual and Asexual Differentiation, and Pathogenesis in Fusarium graminearum

2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.

2021 ◽  
Vol 7 (9) ◽  
pp. 755
Author(s):  
Chen Gong ◽  
Junqi Huang ◽  
Daiyuan Sun ◽  
Daiying Xu ◽  
Yuqian Guo ◽  
...  

The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qinfeng Yuan ◽  
Meijuan Chen ◽  
Yaqin Yan ◽  
Qiongnan Gu ◽  
Junbin Huang ◽  
...  

Colletotrichum higginsianumis an important hemibiotrophic phytopathogen that causes crucifer anthracnose in various regions of the world. In many plant-pathogenic fungi, the Ste11-Ste7-Fus3/Kss1 kinase pathway is essential to pathogenicity and various plant infection processes. To date, the role of ChSte7 inC.higginsianumencoding a MEK orthologue of Ste7 inSaccharomyces cerevisiaehas not been elucidated. In this report, we investigated the function of ChSte7 in the pathogen. The ChSte7 is predicted to encode a 522-amino-acid protein with a S_TKc conserved domain that shares 44% identity with Ste7 inS.cerevisiae. ChSte7 disruption mutants showed white colonies with irregularly shaped edges and extremely decreased growth rates and biomass productions. The ChSte7 disruption mutants did not form appressoria and showed defects in pathogenicity on leaves ofArabidopsis thaliana. When inoculated onto wounded leaf tissues, the ChSte7 disruption mutants grew only on the surface of host tissues but failed to cause lesions beyond the wound site. In contrast, both the wild-type and complementation strains showed normal morphology, produced appressoria, and caused necrosis on leaves ofArabidopsis. Analysis with qRT-PCR suggested that ChSte7 was highly expressed during the late stages of infection. Taken together, our results demonstrate that ChSte7 is involved in regulation of vegetative growth, appressorial formation ofC.higginsianum, and postinvasive growth in host tissues.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e38324 ◽  
Author(s):  
Guanghui Wang ◽  
Chenfang Wang ◽  
Rui Hou ◽  
Xiaoying Zhou ◽  
Guotian Li ◽  
...  

2021 ◽  
Vol 111 (3) ◽  
pp. 531-540
Author(s):  
Zehua Zhou ◽  
Jie Zhang ◽  
Fei Lu ◽  
Yabing Duan ◽  
Mingguo Zhou

Glucose-6-phosphate isomerase (GPI) is ubiquitous in most organisms, catalyzing the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. In this study, we investigated biological and genetic functions of FgGPI in the phytopathogen Fusarium graminearum. We found that hyphal growth, conidial germination, and septa formation were significantly inhibited in FgGPI deletion mutant ∆FgGPI. FgGPI was also positively associated with glucose metabolism, ATP biosynthesis, and carbon source utilization. In addition, pyruvate production, deoxynivalenol (DON) biosynthesis, and virulence were reduced in ∆FgGPI. A coimmunoprecipitation assay demonstrated that FgGPI interacts with Fgβ2. More importantly, the coimmunoprecipitation assay showed that carbendazim-resistant substitutions in β2 tubulin could reduce the interaction intensity between FgGPI and Fgβ2, thereby increasing FgGPI expression and accelerating DON biosynthesis in carbendazim-resistant strains. Taken together, our work revealed the indispensable role of FgGPI in fungal developmental processes, DON biosynthesis, and pathogenicity in F. graminearum.


2009 ◽  
Vol 8 (9) ◽  
pp. 1449-1459 ◽  
Author(s):  
Alberto Gomez ◽  
Jaqueline Perez ◽  
Abigail Reyes ◽  
Angel Duran ◽  
Cesar Roncero

ABSTRACT In Saccharomyces cerevisiae, the simultaneous absence of Slt2 and Rim101 prevents growth in nonosmotically stabilized media (F. Castrejon et al., Eukaryot. Cell 5:507-517, 2006). The double mutant slt2Δ rim101Δ displays altered chitin rings, together with a significant reduction in the overall levels of chitin. Cultures of this mutant lyse upon transfer to nonosmotically stabilized media, mostly through the bud, and such lysis is partially prevented by deletion of the chitinase gene (CTS1). Growth of the slt2Δ rim101Δ double mutant was restored by the overexpression of the GFA1 or CCT7 genes, which code for two biologically unrelated proteins. Further characterization of the mutant and its suppressors indicated that both Slt2 and Rim101 were independently required for the correct assembly of the septum machinery and that their concomitant absence reduced Chs3 accumulation at the neck, leading to lower levels of chitin. GFA1 overexpression, as well as the addition of glucosamine to the growth medium, specifically suppressed the growth defects by activating chitin synthesis at the neck and restoring the normal assembly of the chitin ring. In contrast, overexpression of CCT7, a Cct chaperonin subunit, alleviated the defect in the septum machinery without affecting chitin synthesis. Both suppressors thus act by reducing neck fragility through different mechanisms and allow growth in nonstabilized media. This work reports new roles for Slt2 and Rim101 in septum formation in budding yeast and confirms the homeostatic role of the chitin ring in the maintenance of neck integrity during cell division.


2019 ◽  
Vol 10 ◽  
Author(s):  
Alessandra Quarantin ◽  
Birgit Hadeler ◽  
Cathrin Kröger ◽  
Wilhelm Schäfer ◽  
Francesco Favaron ◽  
...  

PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009185
Author(s):  
Hang Jiang ◽  
Aliang Xia ◽  
Meng Ye ◽  
Jingyi Ren ◽  
Dongao Li ◽  
...  

Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49495 ◽  
Author(s):  
Dawei Zheng ◽  
Shijie Zhang ◽  
Xiaoying Zhou ◽  
Chenfang Wang ◽  
Ping Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document