Survey of computed tomography techniques and absorbed dose in Italian hospitals: a comparison between two methods to estimate the dose–length product and the effective dose and to verify fulfilment of the diagnostic reference levels

2005 ◽  
Vol 16 (1) ◽  
pp. 227-237 ◽  
Author(s):  
Daniela Origgi ◽  
Sabrina Vigorito ◽  
Gaetano Villa ◽  
Massimo Bellomi ◽  
Giampiero Tosi
2022 ◽  
Author(s):  
M. El Mansouri ◽  
M. Talbi ◽  
A. Choukri ◽  
O. Nhila ◽  
M. Aabid

In Morocco, the radiation doses received by adult patients are increasing due to the number of CT examinations performed and the larger number of computed tomography (CT) scanners installed. The aim of this study was to evaluate the radiation doses received by patients for the most common adult CT examinations in order to establish local diagnostic reference levels (DRLs). Data from 1016 adult patients were collected during 3 months from four Moroccan hospitals. Dose length product (DLP) and volumetric computed tomography dose index (CTDIvol) were evaluated by determining the 75th percentile as diagnostic reference levels for the most common examinations including head, chest and abdomen. The DRL for each examination was compared with other studies. The established DRLs in Morocco in terms of CTDIvol were 57.4, 12.3 and 10.9 for CT examinations of the head, chest, abdomen, respectively. For DLP, they were 1020, 632 and 714, respectively. These established DRLs for CTDIvol were almost similar to the UK DRLs at all examinations, higher than the Egyptian DRLs and lower than the Japanese DRLs at the head CT examination, lower than the DRLs from Egypt and Japan at the CT abdomen examination. In terms of DLP, the DRLs were higher than those of the British studies, lower than those of the Egyptian and Japanese studies at the head CT examination were higher at chest CT and lower at abdominal CT than those of all selected studies. The higher level of established DRLs in our study demonstrates the requirement of an optimization process while keeping a good image quality for a reliable diagnosis.


2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


2020 ◽  
Vol 190 (4) ◽  
pp. 364-371
Author(s):  
Nadia Khelassi-Toutaoui ◽  
Ahmed Merad ◽  
Virginia Tsapaki ◽  
Fouzia Meddad ◽  
Zakia Sakhri-Brahimi ◽  
...  

Abstract A pilot study has concerned the most frequent computed tomography examinations (CT). This represents the first results based on actual survey for diagnostic reference levels (DRLs) establishment in Algeria. A total number of 2540 patients underwent this survey that has included the recording of CT parameters, computed tomography dose index (CTDIvol) and dose-length product of the head, thorax, abdomen, abdomen–pelvis (AP), lumbar spine (LS) and thorax–abdomen–pelvis (TAP) performed on standard patients. The proposed DRLs are 71 mGy/1282 mGy.cm for head, 16 mGy/555 mGy.cm for thorax, 18 mGy/671 mGy.cm for abdomen, 21 mGy/950 mGy.cm for AP, 36 mGy/957 mGy.cm for LS and 18 mGy/994 mGy.cm for TAP. The rounded 75th percentile seems to be higher in some examinations compared to the literature. Our findings confirm the need to optimise our practice. These results provide a starting point for institutional evaluation of CT radiation doses.


2012 ◽  
Vol 27 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Darka Hadnadjev ◽  
Danijela Arandjic ◽  
Sanja Stojanovic ◽  
Olivera Ciraj-Bjelac ◽  
Predrag Bozovic ◽  
...  

This paper presents an estimation of local diagnostic reference levels in computed tomography in a large teaching hospital. Local diagnostic reference levels, expressed in terms of volume weighted computed tomography dose index and dose-length product, were estimated for three most frequent adult computer tomography examinations: head, abdomen and pelvis combined, and thorax. The established local diagnostic reference levels values were similar or slightly higher compared to the available guidelines, indicating the possibility for optimization of current practice. Analyzing the protocols used here and recently published studies on dose reduction in computed tomography, a dose-reduction technique, was proposed to decrease tube current values in all three examinations. However, the optimization should be restricted only to standard-sized patients.


2020 ◽  
Vol 191 (4) ◽  
pp. 400-408
Author(s):  
M Benmessaoud ◽  
A Dadouch ◽  
M Talbi ◽  
M Tahiri ◽  
Y El-ouardi

Abstract The purpose of this study was to establish the diagnostic reference levels (DRLs) for paediatric head computed tomography (CT) in Morocco and to assess the effective doses received during head CT examinations. The data of 1007 patients were collected retrospectively from Moroccan university children’s hospitals. The sample was classified per age group:<1, 1–5, 5–10 and 10–15 years. The proposed DRLs were defined as 75th percentile of the distributions, which were in terms of CT dose index of 26.98, 28.88, 34.00 and 38.20 mGy and dose length product of 461.64, 540.06, 627.20 and 705.98 mGy.cm, respectively. The effective doses estimated were 3.6, 2.9, 2 and 1.79 mSv, respectively. The DRLs reported in Morocco were compared with those of other countries, which were based on the same age grouping method, including Thailand, Switzerland, Japan and the international DRLs. Our initiative via the determination of the first Moroccan diagnostic reference levels for paediatric head CT must be a starting point to spread this investigation towards other examinations and imaging modalities.


2020 ◽  
Vol 190 (3) ◽  
pp. 243-249
Author(s):  
Mohamed M Abuzaid ◽  
Wiam Elshami ◽  
A El Serafi ◽  
T Hussien ◽  
J R McConnell ◽  
...  

Abstract This multicenter study evaluated computed tomography dose index volume (CTDIvol) and dose length product (DLP) to contribute to establishing computed tomography (CT) national diagnostic reference levels (NDRLs) in the United Arab Emirates (UAE). Data from 240 patients, who underwent CT head, chest, abdomen–pelvis and urography examinations, were analyzed, including patient age, sex and weight, CTDIvol (mGy) and DLP (mGy cm). The proposed DRLs for each examination were calculated as the third quartile. DRLs are proposed using CTDIvol (mGy) and DLP (mGy cm) for CT head (67 and 1189, respectively), chest (8 and 302, respectively), abdomen–pelvis (28 and 1122, respectively) and urography (20 and 714, respectively). These values are comparable with the initial NDRLs and published international DRLs. Baseline values for International Radiology Center (IRC) CT DRLs were calculated on frequently performed CT examinations. Implementation of DRL values improves dose optimization based on procedures, scanner type and patient characteristics while maintaining acceptable image quality and diagnostic confidence.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257294
Author(s):  
Xiaoyan Hu ◽  
Jie Gou ◽  
Wei Lin ◽  
Chunhua Zou ◽  
Wenbo Li

Rationale and objectives This study aimed to compare the volume computed tomography dose index (CTDIvol), dose length product (DLP), and size-specific dose estimate (SSDE), with the China and updated 2017 American College of Radiology (ACR) diagnostic reference levels (DRLs) in chest CT examinations of adults based on the water-equivalent diameter (Dw). Materials and methods All chest CT examinations conducted without contrast administration from January 2020 to July 2020 were retrospectively included in this study. The Dw and SSDE of all examinations were calculated automatically by “teamplay”. The CTDIvol and DLP were displayed on the DICOM-structured dose report in the console based on a 32cm phantom.The differences in patient CTDIvol, DLP, and SSDE values between groups were examined by the one-way ANOVA. The differences in patient CTDIvol, DLP, and SSDE values between the updated 2017 ACR and the China DRLs were examined with one sample t-tests. Results In total 14666 chest examinations were conducted in our study. Patients were divided into four groups based on Dw:270 (1.84%) in 15–20 cm group, 10287 (70.14%) in the 21–25 cm group, 4097 (27.94%) in the 26–30 cm group, and 12 (0.08%) patients had sizes larger than 30 cm. CTDIvol, DLP, and SSDE increased as a function of Dw (p<0.05). CTDIvol was smaller than SSDE among groups (p<0.05). The mean CTDIvol and DLP values were lower than the 25th, 50th, and 75th percentile of the China DRLs (p <0.05). The CTDIvol, DLP, and SSDE were lower than the 50th and 75th percentiles of the updated 2017 ACR DRLs (p <0.05) among groups. Conclusions SSDE takes into account the influence of the scanning parameters, patient size, and X-ray attenuation on the radiation dose, which can give a more realistic estimate of radiation exposure dose for patients undergoing CT examinations. Establishing hospital’s own DRL according to CTDIvol and SSDE is very important even though the radiation dose is lower than the national DRLs.


2015 ◽  
Vol 19 (2) ◽  
Author(s):  
Zakariya Vawda ◽  
Richard Pitcher ◽  
John Akudugu ◽  
Willem Groenewald

Objectives: To establish local diagnostic reference levels (LDRLs) for emergency paediatric head computed tomography (CT) scans performed at a South African (SA) tertiary-level hospital and to compare these with published data.Materials and methods: A retrospective analysis was conducted of volume-based CT dose index (CTDIvol) and dose length product (DLP) data from uncontrasted paediatric head CT scans performed in the Trauma and Emergency Unit of a tertiary-level SA hospital from January to June 2013. A random sample of 30 patients in each of 3 age groups (0–2, >2–5 and >5–10 years) was used. LDRL values were compared with several national DRLs from Europe and Australia. Results: Mean CTDIvol and DLP values were: 30 mGy and 488 mGy.cm for the 0–2 years age group; 31 mGy and 508 mGy.cm for the >2–5 years group, and 32 mGy and 563 mGy.cm for the >5–10 years group, respectively. The mean DLP for 0–2 year-olds was the only parameter outside the range of corresponding published reference data. Stratification into narrower age groupings showed an increase in DLP values with age. Conclusion: An institutional review of the head CT scanning technique for emergency studies performed on children less than 2 years of age is recommended. The current study highlights the role of LDRLs in establishing institutional dosimetry baselines, in refining local imaging practice, and in enhancing patient safety. Standard age stratification for DRL and LDRL reporting is recommended.


2020 ◽  
Vol 190 (4) ◽  
pp. 446-451
Author(s):  
Ayşegül Yurt ◽  
İsmail Özsoykal ◽  
Recep Kandemir ◽  
Emel Ada

Abstract Purpose This study aims to develop local diagnostic reference levels (DRLs) for the most common computed tomography (CT) examinations carried out around Izmir, Turkey. Methods Five common CT examinations (head, neck, chest, abdomen–pelvis (AP), chest–abdomen–pelvis (CAP)) from four different radiology centres have been included in the study. CT dose index-volume (CTDIvol) and dose length product (DLP) values were recorded for 50 patients per exam in each centre. Third quartiles of CTDIvol and DLP values were determined as DRLs and compared with international findings. Results 51.3% of the patients were male and 48.7% were female, with a mean age of 57 (between 18 and 93). DRLs for CTDIvol were recorded as 70, 16, 15, 23 and 16 for head, neck, chest, AP and CAP examinations, respectively, while the corresponding DLPs were 1385, 604, 567, 998 and 1180 mGy.cm. Conclusion Results are mostly comparable to the latest international data, except for the head examinations, which were observed to slightly exceed the DRLs established by other countries.


2019 ◽  
Vol 188 (2) ◽  
pp. 222-231
Author(s):  
Hamed Zamani ◽  
Hamidreza Masjedi ◽  
Reza Omidi ◽  
Mohammad Hosein Zare

Abstract Objective: The aim of this study was to propose first established diagnostic reference levels (DRLs) in computed tomography (CT) for adults, based on volume-averaged CTDI and dose length product (DLP) metrics in Yazd Province. Materials and Methods: Six multislice CT scanners located at diverse areas of Yazd Province and seven common procedures were selected for the present study. For each procedure, at least twenty patients 18 years and older were sampled at each institution. For each patient, dose report data and scan parameters as well as patient’s information were abstracted from picture archiving and communication system. Results: Proposed DRLs in terms of computed tomography dose index (mGy) and DLP (mGy.cm) were as follows: brain (42, 527), sinus (25, 220), neck (14, 264), abdomen-pelvis (11, 295), routine chest (8, 247), CT pulmonary angiogram (32, 261) and chest HRCT (11, 455), respectively, slightly lower compared to other investigations. Conclusion: The proposed DRLs in this study should be considered as the local DRLs for the seven most common adult CT examinations in Yazd province so as to optimize the patient dose while maintaining acceptable image quality for the clinical task.


Sign in / Sign up

Export Citation Format

Share Document