Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:PCBM active layer

2020 ◽  
Vol 126 (10) ◽  
Author(s):  
Hatice Kaçuş ◽  
Mehmet Biber ◽  
Şakir Aydoğan
Author(s):  
Yan Wang ◽  
Yi Zhang ◽  
Tong Shan ◽  
Qingyun Wei ◽  
Zhenchuang Xu ◽  
...  

To facilitate the device optimization of organic solar cells, a conjugated macrocycle namely cyanostar is firstly utilized to simultaneously modify the active layer and hole transporting layer. Benefiting from the...


Author(s):  
Zhi Zheng ◽  
Enfang He ◽  
Jie Wang ◽  
Zhaotong Qin ◽  
Tianqi Niu ◽  
...  

Solvent additive (SA) treatment is the most effective strategy to obtain highly efficient non-fullerene organic solar cells (NF-OSCs). However, NF-OSCs with SA treatment usually exhibits different or even opposite effect...


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


2013 ◽  
Vol 14 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Gon Namkoong ◽  
Jaemin Kong ◽  
Matthew Samson ◽  
In-Wook Hwang ◽  
Kwanghee Lee

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Shan ◽  
Tong Zhang ◽  
Sheng-Qing Zhu

The effects of corner shape of silver (Ag) nanocubes (NCs) on optical absorptions of organic solar cells (OSCs) are theoretically investigated by finite element method (FEM) calculations. The absorption of sun light in the active layer is calculated. Significant absorption enhancements have been demonstrated in metallic region with different shapes of Ag NCs, among them corner radius (R) is zero result in the best light absorption performance of up to 55% enhancement with respect to bare OSCs. The origins of increased absorption are believed to be the effects of the huge electric field enhancement and increased scattering upon the excitation of localized surface plasmon resonance (LSPR). Apart from usingR=0, we show thatR=3, 6, and 11.29 of Ag NCs in metallic region of active layer may also result in the maximum comparable absorption enhancement of 49%, 41%, and 28%, respectively. In addition, a significant effect of the period of NCs is observed.


Author(s):  
Minas M. Stylianakis ◽  
Dimitriοs M. Kosmidis ◽  
Katerina Anagnostou ◽  
Christos Polyzoidis ◽  
Miron Krassas ◽  
...  

A novel solution-processed graphene-based material was synthesized by treating graphene oxide (GO) with 2,5,7-trinitro-9-oxo-fluorenone-4-carboxylic acid (TNF-COOH) moieties, via simple synthetic routes. The yielded molecule N-[(carbamoyl-GO)ethyl]-N’-[(carbamoyl)-(2,5,7-trinitro-9-oxo-fluorene)] (GO-TNF) was thoroughly characterized and it was shown that it presents favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels to function as a bridge component between the polymeric donor poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) (PTB7) and the fullerene derivative acceptor [6,6]-phenyl-C71-butyric-acid-methylester (PC71BM). In this context, a GO-TNF based ink was prepared and directly incorporated within the binary photoactive layer, in different volume ratios (1-3% ratio to the blend), for the effective realization of inverted ternary organic solar cells (OSCs) of the structure ITO/PFN/PTB7:GO-TNF:PC71BM/MoO3/Al. The addition of 2% v/v GO-TNF ink led to a champion power conversion efficiency (PCE) of 8.71% that was enhanced by ~13% as compared to the reference cell.


2018 ◽  
Vol 63 ◽  
pp. 384-391 ◽  
Author(s):  
Se Jin Lee ◽  
Sang Bong Lee ◽  
Sung Cheol Yoon ◽  
Eun Young Choi ◽  
Choon Sup Yoon

2017 ◽  
Vol 5 (6) ◽  
pp. 2911-2919 ◽  
Author(s):  
W. Greenbank ◽  
N. Rolston ◽  
E. Destouesse ◽  
G. Wantz ◽  
L. Hirsch ◽  
...  

Organic photovoltaic solar cells are a promising option for cheap, renewable energy, but must improve in their stability.


Sign in / Sign up

Export Citation Format

Share Document