exciton diffusion length
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 4)

Solar RRL ◽  
2021 ◽  
Author(s):  
Valentina Belova ◽  
Aleksandr Perevedentsev ◽  
Julien Gorenflot ◽  
Catherine S. P. De Castro ◽  
Miquel Casademont-Viñas ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3367
Author(s):  
Hugo Gaspar ◽  
Andrew J. Parnell ◽  
Gabriel E. Pérez ◽  
Júlio C. Viana ◽  
Stephen M. King ◽  
...  

The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′,5′,22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17–25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kui Jiang ◽  
Jie Zhang ◽  
Zhengxing Peng ◽  
Francis Lin ◽  
Shengfan Wu ◽  
...  

AbstractSolution-processed organic solar cells (OSCs) are a promising candidate for next-generation photovoltaic technologies. However, the short exciton diffusion length of the bulk heterojunction active layer in OSCs strongly hampers the full potential to be realized in these bulk heterojunction OSCs. Herein, we report high-performance OSCs with a pseudo-bilayer architecture, which possesses longer exciton diffusion length benefited from higher film crystallinity. This feature ensures the synergistic advantages of efficient exciton dissociation and charge transport in OSCs with pseudo-bilayer architecture, enabling a higher power conversion efficiency (17.42%) to be achieved compared to those with bulk heterojunction architecture (16.44%) due to higher short-circuit current density and fill factor. A certified efficiency of 16.31% is also achieved for the ternary OSC with a pseudo-bilayer active layer. Our results demonstrate the excellent potential for pseudo-bilayer architecture to be used for future OSC applications.


2021 ◽  
Author(s):  
Dan Liu ◽  
Yuxiao Guo ◽  
Meidan Que ◽  
Xingtian Yin ◽  
Jie Liu ◽  
...  

Recently, perovskite nanocrystals (NCs) have become highly promising materials due to their unique optical and electrical properties such as high absorption coefficient, high photoluminescence quantum yield, and long exciton diffusion length.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Benedito A. L. Raul ◽  
Yuriy N. Luponosov ◽  
Wenyan Yang ◽  
Nikolay M. Surin ◽  
Olivier Douhéret ◽  
...  

AbstractTriphenylamine-based small push–pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push–pull molecules in vacuum and solution processable devices.


2020 ◽  
Author(s):  
Mohamed Mbarek ◽  
Kamel Alimi

The blending or the bilayering of two complementary species are the dominant methods for in-solution-processed thin film devices to get a strong donor-acceptor behavior. They propose opposite strategies for the respective arrangement of the two species, a central point for energy and/or charge transfer. In this work, we propose to engineer at the scale of the exciton diffusion length the organization of a donor (poly(vinyl-carbazole), PVK) and an acceptor (poly(para-phenylene-vinylene), PPV) in a nanowire geometry. A two-step template strategy was used to fabricate coaxial nanowires with PPV and PVK, alternatively as the core or the shell material. Their stationary and time-resolved photoluminescence properties were investigated and compared to the case of PVK-PPV blend. Their respective characteristics are direct evidences of the dominant mechanisms responsible for the emission properties.


Sign in / Sign up

Export Citation Format

Share Document