scholarly journals Effects of Ag Nanocubes with Different Corner Shape on the Absorption Enhancement in Organic Solar Cells

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Shan ◽  
Tong Zhang ◽  
Sheng-Qing Zhu

The effects of corner shape of silver (Ag) nanocubes (NCs) on optical absorptions of organic solar cells (OSCs) are theoretically investigated by finite element method (FEM) calculations. The absorption of sun light in the active layer is calculated. Significant absorption enhancements have been demonstrated in metallic region with different shapes of Ag NCs, among them corner radius (R) is zero result in the best light absorption performance of up to 55% enhancement with respect to bare OSCs. The origins of increased absorption are believed to be the effects of the huge electric field enhancement and increased scattering upon the excitation of localized surface plasmon resonance (LSPR). Apart from usingR=0, we show thatR=3, 6, and 11.29 of Ag NCs in metallic region of active layer may also result in the maximum comparable absorption enhancement of 49%, 41%, and 28%, respectively. In addition, a significant effect of the period of NCs is observed.

2017 ◽  
Vol 7 (04) ◽  
pp. 1 ◽  
Author(s):  
Ming Chen ◽  
Yanxia Cui ◽  
Ye Zhang ◽  
Ting Ji ◽  
Yuying Hao ◽  
...  

2017 ◽  
Vol 266 ◽  
pp. 90-94
Author(s):  
Feng Shan ◽  
Tong Zhang

Metal nanoparticles (MNPs) induced light absorption enhancement using for the improvement of power conversion efficiency of organic solar cells (OSCs) is a new research direction in photovoltaics. However, the device performance influence of the shape and size of MNPs has not been well investigated. In this paper, we focused on the comparison study of the optical absorption enhancement between silver nanospheres (Ag-NSs) and silver nanocubes (Ag-NCs) which are embedded in the active layer of OSCs using finite element method (FEM) simulation. Influence of the structural parameters, including the size and shape of nanoparticels, and their relative distance are systematically discussed. The results indicated that the light absorption enhancement employing Ag-NCs is much higher than that of Ag-NSs in the 300–800 nm wavelength range. Meantime, once the distance between the adjacent nanoparticles is well controlled, the optimal absorption enhancement factor of OSCs can be obtained. As the scattering cross-section of Ag-NCs is much higher than that of Ag-NSs over a broad wavelength range, the optimized light enhancement of Ag-NCs reaches 19 % which is 1.26 times higher than that of Ag-NSs.


2014 ◽  
Vol 1668 ◽  
Author(s):  
Sun Young Park ◽  
Haeng Hee Ahn ◽  
Jiyeon Yoon ◽  
Sang Yong Kim ◽  
Bora Hwang ◽  
...  

ABSTRACTThe modified TiO2 nanoparticles were incorporated into the Bulk heterojunction system of P3HT:PCBM to improve the performance of P3HT:PCBM bulk heterojunction organic solar cells. The organically-modified TiO2 nanoparticle compounds were synthesized in aqueous media at room temperature. These TiO2 compounds in various solution concentrations were deposited on the top of the P3HT:PCBM active layer by spin coating. The performance of organic solar cells was carefully investigated in the respect of the scattering and the localized surface plasmon resonance (LSPR) that couple strongly to the incident light. In addition to the device, P3HT:PCBM solar cells with the use of the TiO2 nanoparticles, enhanced Fill Factor (FF) due mainly to improved shunt resistance (Rsh). The TiO2 plays a critical role in improving the interface between P3HT:PCBM active layer and Al electrode.


Author(s):  
Adi Prasetio ◽  
Soyeon Kim ◽  
Muhammad Jahandar ◽  
Dong Chan Lim

AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.


2012 ◽  
Vol 48 (13) ◽  
pp. 1889 ◽  
Author(s):  
Akhil Gupta ◽  
Abdelselam Ali ◽  
Ante Bilic ◽  
Mei Gao ◽  
Katalin Hegedus ◽  
...  

Author(s):  
Yan Wang ◽  
Yi Zhang ◽  
Tong Shan ◽  
Qingyun Wei ◽  
Zhenchuang Xu ◽  
...  

To facilitate the device optimization of organic solar cells, a conjugated macrocycle namely cyanostar is firstly utilized to simultaneously modify the active layer and hole transporting layer. Benefiting from the...


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


2013 ◽  
Vol 14 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Gon Namkoong ◽  
Jaemin Kong ◽  
Matthew Samson ◽  
In-Wook Hwang ◽  
Kwanghee Lee

2019 ◽  
Vol 7 (47) ◽  
pp. 14861-14866 ◽  
Author(s):  
Xiaojing Wang ◽  
Yidong Yang ◽  
Zhicai He ◽  
Hongbin Wu ◽  
Yong Cao

The influence of the solution components on the VOC in PTB7-Th: ITIC organic solar cells was studied by several analytical techniques (AFM, GIWAXS, EL), focusing on an inside understanding to the mechanism of the active layer morphology on the VOC.


Sign in / Sign up

Export Citation Format

Share Document