Mean properties of mesoscale eddies in the Kuroshio recirculation region

2014 ◽  
Vol 32 (3) ◽  
pp. 681-702
Author(s):  
Libin Ma ◽  
Qiang Wang
2001 ◽  
Vol 31 (4) ◽  
pp. 1054-1074 ◽  
Author(s):  
Dongxiao Zhang ◽  
Thomas N. Lee ◽  
William E. Johns ◽  
Cho-Teng Liu ◽  
Rainer Zantopp

2020 ◽  
Vol 12 (18) ◽  
pp. 3090
Author(s):  
Qian Shi ◽  
Guihua Wang

Based on high resolution satellite observations of sea surface temperature (SST), warm filaments near the Kuroshio around the Luzon Strait were systematically identified. These filaments extend an average length of about 200 km from the Kuroshio. The occurrence and features of the warm filaments are highly associated with both mesoscale eddies and the intensity of the SST gradient of the Kuroshio. Warm filaments are formed by heat advection from the warm Kuroshio into the colder interior Pacific Ocean by anticyclonic eddies (∼58%), cyclonic eddies (∼10%), and the dipole eddies (∼16%). The large temperature gradient near the Batanes Islands may also contribute to the high frequency of warm filaments in their vicinity. This study will help elucidate the role of zonal heat transport associated with the Kuroshio–eddy interaction during filament formation.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 553 ◽  
Author(s):  
Yongchui Zhang ◽  
Xi Chen ◽  
Changming Dong

Mesoscale eddies are common in the ocean and their surface characteristics have been well revealed based on altimetric observations. Comparatively, the knowledge of the three-dimensional (3D) structure of mesoscale eddies is scarce, especially in the open ocean. In the present study, high-resolution field observations of a cyclonic eddy in the Kuroshio Extension have been carried out and the anatomy of the observed eddy is conducted. The temperature anomaly exhibits a vertical monopole cone structure with a maximum of −7.3 °C located in the main thermocline. The salinity anomaly shows a vertical dipole structure with a fresh anomaly in the main thermocline and a saline anomaly in the North Pacific Intermediate Water (NPIW). The cyclonic flow displays an equivalent barotropic structure. The mixed layer is deep in the center of the eddy and thin in the periphery. The seasonal thermocline is intensified and the permanent thermocline is upward domed by 350 m. The subtropical mode water (STMW) straddled between the seasonal and permanent thermoclines weakens and dissipates in the eddy center. The salinity of NPIW distributed along the isopycnals shows no significant difference inside and outside the eddy. The geostrophic relation is approximately set up in the eddy. The nonlinearity—defined as the ratio between the rotational speed to the translational speed—is 12.5 and decreases with depth. The eddy-wind interaction is examined by high resolution satellite observations. The results show that the cold eddy induces wind stress aloft with positive divergence and negative curl. The wind induced upwelling process is responsible for the formation of the horizontal monopole pattern of salinity, while the horizontal transport results in the horizontal dipole structure of temperature in the mixed layer.


2009 ◽  
Vol 65 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Motohiko Kashima ◽  
Shin-Ichi Ito ◽  
Kaoru Ichikawa ◽  
Shiro Imawaki ◽  
Shin-Ichiro Umatani ◽  
...  

2017 ◽  
Vol 47 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Zhao Jing ◽  
Lixin Wu ◽  
Xiaohui Ma

AbstractIn this study, the energy exchange between mesoscale eddies and wind-forced near-inertial oscillations (NIOs) is theoretically analyzed using a slab mixed layer model modified by including the geostrophic flow. In the presence of strain, there is a permanent energy transfer from mesoscale eddies to NIOs forced by isotropic wind stress. The energy transfer efficiency, that is, the ratio of the energy transfer rate to the near-inertial wind work, is proportional to , where S2 is the total strain variance, is the effective Coriolis frequency, and ζ is the relative vorticity. The theories derived from the modified slab mixed layer model are verified by the realistic numerical simulation obtained from a coupled regional climate model (CRCM) configured over the North Pacific. Pronounced energy transfer from mesoscale eddies to wind-forced NIOs is localized in the Kuroshio Extension region associated with both strong near-inertial wind work and strain variance. The energy transfer efficiency in anticyclonic eddies is about twice the value in cyclonic eddies in the Kuroshio Extension region because of the influence of ζ on feff, which may contribute to shaping the dominance of cyclonic eddies than anticyclonic eddies in that region.


2010 ◽  
Vol 60 (3) ◽  
pp. 673-691 ◽  
Author(s):  
Bunmei Taguchi ◽  
Bo Qiu ◽  
Masami Nonaka ◽  
Hideharu Sasaki ◽  
Shang-Ping Xie ◽  
...  

2022 ◽  
Author(s):  
Qiang Ren ◽  
Fei Yu ◽  
Feng Nan ◽  
Yuanlong Li ◽  
Jianfeng Wang ◽  
...  

Abstract The variability of intermediate water (IW) east of Taiwan was investigated utilizing 17 months of long-term, continuous and synchronous measurements of temperature, salinity and current from mooring sites deployed at 122ºE/23ºN from January 2016 to May 2017. For the first time, we prove that the intraseasonal variability in the IW within significant periods of ~80 days was caused by mesoscale eddies propagating westward from the Subtropic Counter Current (STCC) area. The correlation coefficients between sea level anomalies (SLAs) and the Kuroshio, and between SLAs and the minimum salinity in the intermediate layer, were 0.63 and 0.52, respectively. The anticyclonic (cyclonic) eddies from the STCC, increased (decreased) the speed of the Kuroshio as well as increase (decrease) the temperature and salinity in the 400–600 m in east of Taiwan. Combines Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) products data, showed that temperature and salinity increased (decreased) in the intermediate layer due to the downward (upward) vertical movement of the water mass by anticyclonic (cyclonic) eddies. Anticyclonic eddies strengthened the Kuroshio and benefitted SCSIW flowing through the Luzon Strait to enhance salinity, while cyclonic eddies weakened the Kuroshio and favored relatively low-salt NPIW, in the area east of Taiwan.


2020 ◽  
Author(s):  
Hang Chang ◽  
Yahao Liu

<p>The spatial-temporal variability and energetics of M2 internal tides during their generation and propagation through the Kuroshio flows and robust eddies northeast of Taiwan are investigated using a high-resolution numerical model. The corrugated continental slopes, particularly the I-Lan Ridge and Mien-Hua Canyon, are identified as the energetic sources of M2 internal tides. The M2 internal tide generation is influenced by the horizontally varying and zonally tilting stratification associated with the Kuroshio currents and mesoscale eddies. In this situation, the magnitude of conversion rate and energy beam exhibit highly temporal variability. An energetic along-slope tidal beam from the I-Lan Ridge radiates southward against the northward Kuroshio flows, causing strong vertical displacement. Complex background currents lead to the time-varying inhomogeneous diapycnal mixing induced by internal tide dissipation.</p>


2020 ◽  
Vol 47 (1) ◽  
Author(s):  
Xuan Shan ◽  
Zhao Jing ◽  
Bolan Gan ◽  
Lixin Wu ◽  
Ping Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document