Response to Gibberellin Structural Variants Shows that Ability to Inhibit Flowering Correlates with Effectiveness for Promoting Stem Elongation of Some Plant Species

2000 ◽  
Vol 19 (4) ◽  
pp. 437-444 ◽  
Author(s):  
R.W. King ◽  
H. Seto ◽  
R.M. Sachs
Author(s):  
Jin Zheng ◽  
Tai-Jie Zhang ◽  
Bo-Hui Li ◽  
Wei-Jie Liang ◽  
Qi-Lei Zhang ◽  
...  

Phenotypic plasticity affords invasive plant species the ability to colonize a wide range of habitats, but physiological plasticity of their stems is seldom recognized. Investigation of the stem plasticity of invasive plant species could lead to a better understanding of their invasiveness. We performed a pot experiment involving defoliation treatments and an isolated culture experiment to determine whether the invasive species Mikania micrantha exhibits greater plasticity in the stems than do three native species that co-occur in southern China and then explored the mechanism underlying the modification of its stem photosynthesis. Our results showed that the stems of M. micrantha exhibited higher plasticity in terms of either net or gross photosynthesis in response to the defoliation treatment. These effects were positively related to an increased stem elongation rate. The enhancement of stem photosynthesis in M. micrantha resulted from the comprehensive action involving increases in the Chl a/b ratio, D1 protein and stomatal aperture, changes in chloroplast morphology and a decrease in anthocyanins. Increased plasticity of stem photosynthesis may improve the survival of M. micrantha under harsh conditions and allow it to rapidly recover from defoliation injuries. Our results highlight that phenotypic plasticity promotes the invasion success of alien plant invaders.


2003 ◽  
Vol 128 (4) ◽  
pp. 486-491 ◽  
Author(s):  
Teresa A. Cerny ◽  
James E. Faust ◽  
Desmond R. Layne ◽  
Nihal C. Rajapakse

Growth chambers constructed of photoselective plastic films were used to investigate light quality effects on flowering and stem elongation of six flowering plant species under strongly inductive and weakly inductive photoperiods. Three films were used: a clear control film, a far red (FR) light absorbing (AFR) film and a red (R) light absorbing (AR) film. The AFR and AR films intercepted FR (700 to 800 nm) and R (600 to 700 nm) wavelengths with maximum interception at 730 and 690 nm, respectively. The phytochrome photoequilibrium estimates of transmitted light for the control, AFR, and AR films were 0.71, 0.77, and 0.67. The broad band R:FR ratios were 1.05, 1.51, and 0.77, respectively. The photosynthetic photon flux was adjusted with neutral density filters to provide similar light transmission among chambers. Zinnia elegans Jacq., Dendranthema×grandiflorum Kitam. (chrysanthemum), Cosmos bipinnatus Cav., and Petunia×hybrida Vilm.-Andr. plants grown under the AFR film were shorter than control plants. The AFR film had no effect on height of Antirrhinum majus L. (snapdragon) or Rosa×hybrida (miniature rose). Anthesis of zinnia, chrysanthemum, cosmos (short-day plants), and miniature rose (day-neutral plant) was not influenced by the AFR films. Anthesis of petunia and snapdragon (long-day plants) was delayed up to 13 days by AFR films under weakly inductive photoperiods. In petunia, initiation and development of floral structures were not affected by the AFR films during strongly inductive photoperiods. However, during weakly inductive photoperiods, initiation of the floral primordia was significantly delayed and overall development of the floral meristem was slower than control plants indicating that the AFR films could increase the production time if long-day plants were produced off-season. Daylength extension with electric light sources could overcome this delay in anthesis yet achieve the benefit of AFR films for height reduction without the use of chemical growth regulators.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
N Moodley ◽  
V Maharaj
Keyword(s):  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
J Táborský ◽  
M Kunt ◽  
P Kloucek ◽  
L Kokoska

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
V Roumy ◽  
AL Gutierrez-Choquevilca ◽  
JP Lopez Mesia ◽  
L Ruiz ◽  
J Ruiz ◽  
...  

2017 ◽  
Author(s):  
P Polychronopoulos ◽  
FA Lyssaios ◽  
R Michalea ◽  
N Aligiannis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document