Taxonomic distribution of thymoquinone and related compounds in selected plant species

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
J Táborský ◽  
M Kunt ◽  
P Kloucek ◽  
L Kokoska
2013 ◽  
Vol 61 (2) ◽  
pp. 161-172 ◽  
Author(s):  
M. Pál ◽  
O. Gondor ◽  
T. Janda

Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA), a phenolic compound produced by a wide range of plant species, may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed.


2019 ◽  
Vol 57 (1) ◽  
pp. 367-386 ◽  
Author(s):  
Michael F. Seidl ◽  
Guido Van den Ackerveken

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of NLP genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., Arabidopsis thaliana detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.


1968 ◽  
Vol 46 (8) ◽  
pp. 797-806 ◽  
Author(s):  
N. Rosa ◽  
A. C. Neish

Shoots of barley seedlings when fed D-phenylalanine convert the amino acid to N-malonylphenylalanine. Some N-acetylphenylalanine is obtained at the same time but this may be an artifact of the isolation procedure since it is readily formed by decarboxylation of the malonylphenylalanine. Feeding experiments with the D- and L-isomers of phenylalanine, valine, leucine, isoleucine, tyrosine, tryptophan, alanine, and glutamic acid showed that barley shoots form the malonyl derivative from all the D-isomers whereas little, if any, is formed from the L-isomers. Similar experiments with phenylalanine and leucine isomers, using seven different plant species, showed that the ability to conjugate the D-isomers (but not the L-isomers) was found in all of the plants tested. It was also observed that the ether-soluble acidic conjugates of a variety of amino acids, possibly malonyl derivatives, occur widely throughout the plant kingdom.


Nature ◽  
1945 ◽  
Vol 156 (3969) ◽  
pp. 630-630 ◽  
Author(s):  
W. G. TEMPLEMAN ◽  
W. A. SEXTON

2012 ◽  
Vol 10 (6) ◽  
pp. 1899-1906 ◽  
Author(s):  
Jan Taborsky ◽  
Miroslav Kunt ◽  
Pavel Kloucek ◽  
Jaromir Lachman ◽  
Vaclav Zeleny ◽  
...  

AbstractIn this study, forty-seven plant species belonging to seven families were analysed by GC and GC-MS for the contents of pharmacologically effective quinones: dithymoquinone (DTQ), thymohydroquinone (THQ), and thymoquinone (TQ). The results showed that detectable amounts (≥1 mg kg−1) of at least one of these compounds have been found in three species of both Monarda (M. didyma, M. media, and M. menthifolia) and Thymus (T. pulegioides, T. serpyllum, and T. vulgaris) genera, two Satureja (S. hortensis and S. montana) species, and in single representatives of Eupatorium (E. cannabinum), Juniperus (J. communis), and Nigella (N. sativa) genera. The maximum contents of THQ and TQ were found in M. media aerial parts and M. didyma inflorescences (2674 and 3564 mg kg−1 of dried weight, respectively) in amounts significantly exceeding their maximum contents in N. sativa seeds (THQ = 530 mg kg−1 and TQ = 1881 mg kg−1), which are generally considered as the main natural source of both of these compounds. As a conclusion, M. didyma (bergamot) and M. media (purple bergamot) can be recommended as new prospective natural sources of THQ and TQ for pharmaceutical or food industries.


1961 ◽  
Vol 39 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Stewart A. Brown

A survey of various plant species for the ability to utilize L-tyrosine as a lignin precursor has been extended, and the results obtained on a total of 21 species, representing seven families of monocotyledons and five of dicotyledons, are presented. Only grasses were able to convert L-tyrosine and L-phenylalanine to lignin with about equal efficiency, although two members of the Compositae and possibly one monocotyledon, Triglochin maritima, showed evidence of some ability to utilize tyrosine. One species of Juncus, J. nodosus, was unable to use phenylalanine efficiently and another, J. balticus, yielded conflicting results with regard to the utilization of both compounds. The findings are discussed in relation to known lignification pathways and taxonomic relationships.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 311-316 ◽  
Author(s):  
Strahil Berkov ◽  
Jaume Bastida ◽  
Reneta Tsvetkova ◽  
Francesc Viladomat ◽  
Carles Codina

Twenty-one alkaloids and related compounds were found in Sternbergia colchiciflora (Amaryllidaceae), a hitherto not studied plant species. Twenty of them were detected by GC-MS in the crude extracts of this plant species. Ten alkaloids were isolated and their structures confirmed by NMR, MS and CD measurements. Many of the compounds found in this species, such as lycorine, tazettine, haemanthidine, are known to possess strong bioactivity. Variations in the alkaloid pattern were found during the phenological cycle of the plant. Lycorine-type compounds were dominant in the plant organs during both the fl owering period and dormancy. The alkaloid pattern during both periods of leaf development and fructification was dominated by haemanthamine-type in the leaves and lycorine-type compounds in the bulbs, respectively


2013 ◽  
Author(s):  
A. V. Kalueff ◽  
A. M. Stewart ◽  
V. Gjeloshi ◽  
D. Kondaveeti ◽  
N. Neelkantan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document