Time-resolved volumetric particle tracking velocimetry of large-scale vortex structures from the reattachment region of a laminar separation bubble to the wake

2010 ◽  
Vol 50 (4) ◽  
pp. 977-988 ◽  
Author(s):  
E. Wolf ◽  
C. J. Kähler ◽  
D. R. Troolin ◽  
C. Kykal ◽  
W. Lai
2011 ◽  
Vol 671 ◽  
pp. 1-33 ◽  
Author(s):  
OLAF MARXEN ◽  
DAN S. HENNINGSON

Short laminar separation bubbles can develop on a flat plate due to an externally imposed pressure gradient. Here, these bubbles are computed by means of direct numerical simulations. Laminar–turbulent transition occurs in the bubble, triggered by small disturbance input with fixed frequency, but varying amplitude, to keep the bubbles short. The forcing amplitudes span a range of two orders of magnitude. All resulting bubbles differ with respect to their mean flow, linear-stability characteristics and distance between transition and mean reattachment locations. Mechanisms responsible for these differences are analysed in detail. Switching off the disturbance input or reducing it below a certain, very small threshold causes the short bubble to grow continuously. Eventually, it no longer exhibits typical characteristics of a short laminar separation bubble. Instead, it is argued that bursting has occurred and the bubble displays characteristics of a long-bubble state, even though this state was not a statistically steady state. This hypothesis is backed by a comparison of numerical results with measurements. For long bubbles, the transition to turbulence is not able to reattach the flow immediately. This effect can lead to the bursting of a short bubble, which remains short only when sufficiently large disturbances are convected into the bubble. Large-scale spanwise-oriented vortices at transition are observed for short but not for long bubbles. The failure of the transition process to reattach the flow in the long-bubble case is ascribed to this difference in transitional vortical structures.


2017 ◽  
Vol 820 ◽  
pp. 633-666 ◽  
Author(s):  
Theodoros Michelis ◽  
Serhiy Yarusevych ◽  
Marios Kotsonis

The spatial and temporal response characteristics of a laminar separation bubble to impulsive forcing are investigated by means of time-resolved particle image velocimetry and linear stability theory. A two-dimensional impulsive disturbance is introduced with an alternating current dielectric barrier discharge plasma actuator, exciting pertinent instability modes and ensuring flow development under environmental disturbances. Phase-averaged velocity measurements are employed to analyse the effect of imposed disturbances at different amplitudes on the laminar separation bubble. The impulsive disturbance develops into a wave packet that causes rapid shrinkage of the bubble in both upstream and downstream directions. This is followed by bubble bursting, during which the bubble elongates significantly, while vortex shedding in the aft part ceases. Duration of recovery of the bubble to its unforced state is independent of the forcing amplitude. Quasi-steady linear stability analysis is performed at each individual phase, demonstrating reduction of growth rate and frequency of the most unstable modes with increasing forcing amplitude. Throughout the recovery, amplification rates are directly proportional to the shape factor. This indicates that bursting and flapping mechanisms are driven by altered stability characteristics due to variations in incoming disturbances. The emerging wave packet is characterised in terms of frequency, convective speed and growth rate, with remarkable agreement between linear stability theory predictions and measurements. The wave packet assumes a frequency close to the natural shedding frequency, while its convective speed remains invariant for all forcing amplitudes. The stability of the flow changes only when disturbances interact with the shear layer breakdown and reattachment processes, supporting the notion of a closed feedback loop. The results of this study shed light on the response of laminar separation bubbles to impulsive forcing, providing insight into the attendant changes of flow dynamics and the underlying stability mechanisms.


2013 ◽  
Vol 728 ◽  
pp. 58-90 ◽  
Author(s):  
Olaf Marxen ◽  
Matthias Lang ◽  
Ulrich Rist

AbstractThe convective primary amplification of a forced two-dimensional perturbation initiates the formation of essentially two-dimensional large-scale vortices in a laminar separation bubble. These vortices are then shed from the bubble with the forcing frequency. Immediately downstream of their formation, the vortices get distorted in the spanwise direction and quickly disintegrate into small-scale turbulence. The laminar–turbulent transition in a forced laminar separation bubble is dominated by this vortex formation and breakup process. Using numerical and experimental data, we give an in-depth characterization of this process in physical space as well as in Fourier space, exploiting the largely periodic character of the flow in time as well as in the spanwise direction. We present evidence that a combination of more than one secondary instability mechanism is active during this process. The first instability mechanism is the elliptic instability of vortex cores, leading to a spanwise deformation of the cores with a spanwise wavelength of the order of the size of the vortex. Another mechanism, potentially an instability of flow in between two consecutive vortices, is responsible for three-dimensionality in the braid region. The corresponding disturbances possess a much smaller spanwise wavelength as compared to those amplified through elliptic instability. The secondary instability mechanisms occur for both fundamental and subharmonic frequency, respectively, even in the absence of continuous forcing, indicative of temporal amplification in the region of vortex formation.


2018 ◽  
Vol 11 (2) ◽  
pp. 31-39
Author(s):  
L. М. Chikishev ◽  
◽  
V. М. Dulin ◽  
A. S. Lobasov ◽  
D. М. Markovich ◽  
...  

2012 ◽  
Vol 89 (4) ◽  
pp. 547-562 ◽  
Author(s):  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino

Sign in / Sign up

Export Citation Format

Share Document