Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics

2016 ◽  
Vol 57 (5) ◽  
Author(s):  
Jeffrey R. Osborne ◽  
Sarah A. Ramji ◽  
Campbell D. Carter ◽  
Scott Peltier ◽  
Stephen Hammack ◽  
...  
2021 ◽  
pp. 25-99
Author(s):  
V. Sabelnikov ◽  
A. Lipatnikov ◽  
X.-S. Bai ◽  
N. Swaminathan

1985 ◽  
Author(s):  
John Abraham ◽  
Forman A. Williams ◽  
Frediano V. Bracco

Author(s):  
Pradeep Parajuli ◽  
Ayush Jain ◽  
Waruna D. Kulatilaka

Abstract Carbon monoxide (CO) and hydroxyl (OH) are the two key intermediate species formed during chemical reactions inside gas turbine combustors. Spatiotemporal information and a detailed understanding of CO formation in the reaction zone are important during the combustion processes as a major part of the heat release is obtained from the oxidation of CO to CO2. Turbulent flame structures and reaction zone in different flame conditions can also be visualized through the spatial distribution profiles of OH. In the current study, both these species are excited simultaneously using a single ultrashort, broad spectral bandwidth of approximately 100-femtosecond (fs) duration laser pulse at λ = 283.8 nm. Subsequent fluorescence signals are separated through spectral filters of appropriate bandwidth and imaged using two cameras. This present study was performed in a McKenna flat-flame burner with ethylene/air as a pilot flame and non-premixed turbulent ethylene jet at the center. The partial spectral overlap of CO–X (4,0) and OH A–X (1,0) transitions are utilized for simultaneous excitation, thereby characterize the overall flame structure (via OH) and regions of oxidation reactions (via CO) in a range of flame conditions. Besides, CO and OH profiles follow the trends obtained from model predictions for a range of equivalence ratios in ethylene/air flames stabilized over the Hencken calibration burner. These results are used for obtaining quantitative calibrations of CO and OH signals. Overall, the present study extends the applicability of a single, broadband fs laser pulse for simultaneous imaging of multiple chemical species in flame.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Gordon Fru ◽  
Gábor Janiga ◽  
Dominique Thévenin

Parametric direct numerical simulations (DNS) of turbulent premixed flames burning methane in the thin reaction zone regime have been performed relying on complex physicochemical models and taking into account volume viscosity (κ). The combined effect of increasing turbulence intensities (u′) andκon the resulting flame structure is investigated. The turbulent flame structure is marred with numerous perforations and edge flame structures appearing within the burnt gas mixture at various locations, shapes and sizes. Stepping upu′from 3 to 12 m/s leads to an increase in the scaled integrated heat release rate from 2 to 16. This illustrates the interest of combustion in a highly turbulent medium in order to obtain high volumetric heat release rates in compact burners. Flame thickening is observed to be predominant at high turbulent Reynolds number. Via ensemble averaging, it is shown that both laminar and turbulent flame structures are not modified byκ. These findings are in opposition to previous observations for flames burning hydrogen, where significant modifications induced byκwere found for both the local and global properties of turbulent flames. Therefore, to save computational resources, we suggest that the volume viscosity transport term be ignored for turbulent combustion DNS at low Mach numbers when burning hydrocarbon fuels.


Author(s):  
Mohan K. Bobba ◽  
Priya Gopalakrishnan ◽  
Karthik Periagaram ◽  
Jerry M. Seitzman

A novel combustor design, referred to as a stagnation-point reverse-flow (SPRF) combustor, was recently developed to overcome the stability issues encountered with most lean premixed combustion systems. The SPRF combustor is able to operate stably at very lean fuel-air mixtures with low NOx emissions. The reverse flow configuration causes the flow to stagnate and hot products to reverse and leave the combustor. The highly turbulent stagnation zone and internal recirculation of hot product gases facilitates robust flame stabilization in the SPRF combustor at very lean conditions over a range of loadings. Various optical diagnostic techniques are employed to investigate the flame characteristics of a SPRF combustor operating with premixed natural gas and air at atmospheric pressure. These include simultaneous planar laser-induced fluorescence imaging of OH radicals and chemiluminescence imaging, and spontaneous Raman scattering. The results indicate that the combustor has two stabilization regions, with the primary region downstream of the injector where there are low average velocities and high turbulence levels where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product recirculation levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on the chemical time scales and the flame structure is quantified using simple reactor models. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zone regime throughout the combustor. The flame tends to become more flameletlike, however, for increasing distance from the injector.


Author(s):  
Mohan K. Bobba ◽  
Priya Gopalakrishnan ◽  
Karthik Periagaram ◽  
Jerry M. Seitzman

A novel combustor design, referred to as a Stagnation Point Reverse Flow (SPRF) combustor, was recently developed to overcome the stability issues encountered with most lean premixed combustion systems. The SPRF combustor is able to operate stably at very lean fuel-air mixtures with low NOx emissions. The reverse flow configuration causes the flow to stagnate and hot products to reverse and leave the combustor. The highly turbulent stagnation zone and internal recirculation of hot product gases facilitates robust flame stabilization in the SPRF combustor at very lean conditions over a range of loadings. Various optical diagnostic techniques are employed to investigate the flame characteristics of a SPRF combustor operating with premixed natural gas and air at atmospheric pressure. These include simultaneous Planar Laser-Induced Fluorescence (PLIF) imaging of OH radicals, chemiluminescence imaging, Spontaneous Raman Scattering. The results indicate that the combustor has two stabilization regions, with the primary region downstream of the injector where there are low average velocities and high turbulence levels where most of the heat release occurs. High turbulence level in the shear layers lead to increased product recirculation levels, elevating the reaction rates and thereby, the combustor stability. The effect of product entrainment on the chemical timescales and the flame structure is quantified using simple reactor models. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor. The flame tends to become more flamelet like, however, for increasing distance from the injector.


2003 ◽  
Vol 2 (2) ◽  
pp. 41
Author(s):  
W. M. C. Dourado ◽  
P. Bruel ◽  
J. L. F. Azevedo

A pseudo-compressibility method for zero Mach number turbulent reactive flows with heat release is combined with an unstructured finite volume hybrid grid scheme. The spatial discretization is based on an overlapped cell vertex approach. An infinite freely planar flame propagating into a turbulent medium of premixed reactants is considered as a test case. The recourse to a flamelet combustion modeling for which the reaction rate is quenched in a continuous way ensures the uniqueness of the turbulent flame propagation velocity. To integrate the final form of discretized governing equations, a three-stage hybrid time-stepping scheme is used and artificial dissipation terms are added to stabilize the convergence path towards the final steady solution. The results obtained with such a numerical procedure prove to be in good agreement with those reported in the literature on the very same flow geometry. Indeed, the flame structure as well as its propagation velocity are accurately predicted thus confirming the validity of the approach followed and demonstrating that such a numerical procedure will be a valuable tool to deal with complex reactive flow geometries.


2019 ◽  
Vol 35 (3) ◽  
pp. 552-564 ◽  
Author(s):  
Patton M. Allison ◽  
Kraig Frederickson ◽  
Justin W. Kirik ◽  
Robert D. Rockwell ◽  
Christopher P. Goyne ◽  
...  

2004 ◽  
Vol 2004.40 (0) ◽  
pp. 173-174
Author(s):  
Ken OONO ◽  
Eun-Seong Cho ◽  
Hideaki KOBAYASHI ◽  
Hirokazu HAGIWARA ◽  
Yasuhiro OGANII ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document