Tomographic PIV analysis of physiological flow conditions in a patient-specific arteriovenous fistula

2020 ◽  
Vol 61 (12) ◽  
Author(s):  
Sanjiv Gunasekera ◽  
Olivia Ng ◽  
Shannon Thomas ◽  
Ramon Varcoe ◽  
Charitha de Silva ◽  
...  
2021 ◽  
pp. 197140092110059
Author(s):  
Marco Colasurdo ◽  
Joseph Domenico Gabrieli ◽  
Giacomo Cester ◽  
Davide Simonato ◽  
Mariagiulia Anglani ◽  
...  

The pressure cooker technique was originally ideated to obtain wedge-flow conditions during arteriovenous malformation or arteriovenous fistula embolisation. The anti-reflux plug created with coils or glue around the tip of a detachable microcatheter enables a continuous injection with a more in-depth penetration. Here we describe two illustrative cases performed with a variation of the technique that we describe as the hand-compression pressure cooker technique.


2021 ◽  
Author(s):  
Marco Testaguzza ◽  
Mehdi Benhassine ◽  
Haroun Frid ◽  
Laurence Gebhart ◽  
Karim Zouaoui Boudjeltia ◽  
...  

Abstract Ischemic Stroke is the most frequent type of stroke and is subject to many studies investigating prevention means. Avoiding the difficulties and ethical problems of experimental in-vivo research, in-vitro testing is a convenient way of studying in controlled conditions the morphological impact and mechanical aspects of emboli dynamics. This in-vitro study was performed with two realistic silicone aortic-arch phantoms submitted to physiological pulsatile flow conditions. In the in-vitro test bed, using automatic image tracking and analysis, it was made possible detecting and tracking artificial spherical emboli candidates circulating in the anatomic aortic-arch models under a realistic based-patient blood flow profile. The emboli trajectories as well as their repartition in the different supra-aortic branches are presented for the two aortic-arch geometries obtained from CT scans. Through a statistical analysis performed with several artificial emboli sizes, the experimental study shows that the repartition percentages of the emboli closely follow the flowrate repartition percentages for both aortic-arch models, suggesting that higher flowrates lead to higher concentrations of emboli in a given artery. Sets of human thrombi were also injected and the repartition percentages have been established, giving the same trend as for artificial emboli.


Author(s):  
Daniel Jodko ◽  
Tomasz Palczynski ◽  
Piotr Reorowicz ◽  
Kacper Miazga ◽  
Damian Obidowski ◽  
...  

A pressure drop and its oscillations occurring in the arteriovenous fistula due to sudden changes in the velocity vector direction or the transitional or turbulent flow, related to its complicated geometry, can exert a significant impact on the blood vessel wall behaviour. On the other hand, the pressure drop cannot be precisely measured in vivo with non-invasive measurement methods. The aim of this study is to assess the pressure drop with numerical and experimental methods in the patient-specific fistula model taking into account a pulsating nature of the flow and the elasticity of blood vessel walls. An additional target is to find a correlation between these two methods. FSI and in vitro simulations of the blood flow were performed for a patient-specific model of the fistula. Basic geometrical data of the correctly functioning mature fistula were obtained with angio-computed tomography. Those data were applied to develop a spatial CAD model of the fistula, which allowed for creating a virtual model for computer simulations and an analogous in vitro model made with rapid prototyping techniques. The material used to build the in vitro model is characterised by mechanical properties similar to the arterial tissue. A non-stationary computer simulation was carried out with an ANSYS software package, keeping as many flow similarities to the experiments carried out on the test stand as possible, and where the blood mimicking fluid was a water solution of glycerine. During the experiments, the static pressure was measured downstream and upstream of the anastomosis with precise pressure transducers. The pressure drop was determined with the numerical and experimental methods, which take into account the elasticity of blood vessels. This is a novel approach, since most of similar studies were conducted on the assumption of rigid blood vessel walls. The obtained results show that the pressure drop within the fistula is not so high as reported in the literature, which is correlated with the precision of measurement methods and the fact that a large portion of the fluid energy is accumulated by the elastic walls.


2019 ◽  
Vol 47 (1) ◽  
pp. E21 ◽  
Author(s):  
Juhana Frösen ◽  
Juan Cebral ◽  
Anne M. Robertson ◽  
Tomohiro Aoki

OBJECTIVEUnruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both.METHODSThis review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models.RESULTSBlood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process.CONCLUSIONSFlow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.


2008 ◽  
Vol 5 (26) ◽  
pp. 1067-1075 ◽  
Author(s):  
G Coppola ◽  
C Caro

Arterial geometry is commonly non-planar and associated with swirling blood flow. In this study, we examine the effect of arterial three-dimensionality on the distribution of wall shear stress (WSS) and the mass transfer of oxygen from the blood to the vessel wall in a U-bend, by modelling the blood vessels as either cylindrical or helical conduits. The results show that under physiological flow conditions, three-dimensionality can reduce both the range and extent of low WSS regions and substantially increase oxygen flux through the walls. The Sherwood number and WSS distributions between the three-dimensional helical model and a human coronary artery show remarkable qualitative agreement, implying that coronary arteries may potentially be described with a relatively simple idealized three-dimensional model, characterized by a small number of well-defined geometric parameters. The flow pattern downstream of a planar bend results in separation of the Sh number and WSS effects, a finding that implies means of investigating them individually.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Sharan Ramaswamy ◽  
Steven M. Boronyak ◽  
Trung Le ◽  
Andrew Holmes ◽  
Fotis Sotiropoulos ◽  
...  

The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289–313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 × 106 cells/cm2. The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0–9 dynes/cm2) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P < 0.05) higher amounts of collagen (2051 ± 256 μg/g) at the end of 2 weeks in comparison to similar experiments previously conducted in our laboratory but performed at subphysiological levels of shear stress (<2 dynes/cm2; Engelmayr et al., 2006, "Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083–6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on engineered heart valve tissue formation.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Vitaliy L. Rayz ◽  
Loic Boussel ◽  
Gabriel Acevedo-Bolton ◽  
Alastair J. Martin ◽  
William L. Young ◽  
...  

Computational fluid dynamics (CFD) methods can be used to compute the velocity field in patient-specific vascular geometries for pulsatile physiological flow. Those simulations require geometric and hemodynamic boundary values. The purpose of this study is to demonstrate that CFD models constructed from patient-specific magnetic resonance (MR) angiography and velocimetry data predict flow fields that are in good agreement with in vivo measurements and therefore can provide valuable information for clinicians. The effect of the inlet flow rate conditions on calculated velocity fields was investigated. We assessed the internal consistency of our approach by comparing CFD predictions of the in-plane velocity field to the corresponding in vivo MR velocimetry measurements. Patient-specific surface models of four basilar artery aneurysms were constructed from contrast-enhanced MR angiography data. CFD simulations were carried out in those models using patient-specific flow conditions extracted from MR velocity measurements of flow in the inlet vessels. The simulation results computed for slices through the vasculature of interest were compared with in-plane velocity measurements acquired with phase-contrast MR imaging in vivo. The sensitivity of the flow fields to inlet flow ratio variations was assessed by simulating five different inlet flow scenarios for each of the basilar aneurysm models. In the majority of cases, altering the inlet flow ratio caused major changes in the flow fields predicted in the aneurysm. A good agreement was found between the flow fields measured in vivo using the in-plane MR velocimetry technique and those predicted with CFD simulations. The study serves to demonstrate the consistency and reliability of both MR imaging and numerical modeling methods. The results demonstrate the clinical relevance of computational models and suggest that realistic patient-specific flow conditions are required for numerical simulations of the flow in aneurysmal blood vessels.


Sign in / Sign up

Export Citation Format

Share Document