An integrated approach of ANFIS-grasshopper optimization algorithm to approximate flyrock distance in mine blasting

Author(s):  
Hadi Fattahi ◽  
Mahdi Hasanipanah
2019 ◽  
Vol 10 (1) ◽  
pp. 38-57 ◽  
Author(s):  
Sunanda Hazra ◽  
Tapas Pal ◽  
Provas Kumar Roy

This article presents an integrated approach towards the economical operation of a hybrid system which consists of conventional thermal generators and renewable energy sources like windmills using a grasshopper optimization algorithm (GOA). This is based on the social interaction nature of the grasshopper, considering a carbon tax on the emissions from the thermal unit and uncertainty in wind power availability. The Weibull distribution is used for nonlinearity of wind power availability. A standard system, containing six thermal units and two wind farms, is used for testing the dispatch model of three different loads. The GOA results are compared with those obtained using a recently developed quantum-inspired particle swarm optimization (QPSO) optimization technique available in the literature. The simulation results demonstrate the efficacy and ability of GOA over the QPSO algorithm in terms of convergence rate and minimum fitness value. Performance analysis under wind power integration and emission minimization further confirms the supremacy of the GOA algorithm.


Author(s):  
Sunanda Hazra ◽  
Tapas Pal ◽  
Provas Kumar Roy

This article presents an integrated approach towards the economical operation of a hybrid system which consists of conventional thermal generators and renewable energy sources like windmills using a grasshopper optimization algorithm (GOA). This is based on the social interaction nature of the grasshopper, considering a carbon tax on the emissions from the thermal unit and uncertainty in wind power availability. The Weibull distribution is used for nonlinearity of wind power availability. A standard system, containing six thermal units and two wind farms, is used for testing the dispatch model of three different loads. The GOA results are compared with those obtained using a recently developed quantum-inspired particle swarm optimization (QPSO) optimization technique available in the literature. The simulation results demonstrate the efficacy and ability of GOA over the QPSO algorithm in terms of convergence rate and minimum fitness value. Performance analysis under wind power integration and emission minimization further confirms the supremacy of the GOA algorithm.


2021 ◽  
Author(s):  
Betül Sultan Yildiz ◽  
Nantiwat Pholdee ◽  
Sujin Bureerat ◽  
Ali Riza Yildiz ◽  
Sadiq M. Sait

Author(s):  
Wei Liu ◽  
Shuai Yang ◽  
Zhiwei Ye ◽  
Qian Huang ◽  
Yongkun Huang

Threshold segmentation has been widely used in recent years due to its simplicity and efficiency. The method of segmenting images by the two-dimensional maximum entropy is a species of the useful technique of threshold segmentation. However, the efficiency and stability of this technique are still not ideal and the traditional search algorithm cannot meet the needs of engineering problems. To mitigate the above problem, swarm intelligent optimization algorithms have been employed in this field for searching the optimal threshold vector. An effective technique of lightning attachment procedure optimization (LAPO) algorithm based on a two-dimensional maximum entropy criterion is offered in this paper, and besides, a chaotic strategy is embedded into LAPO to develop a new algorithm named CLAPO. In order to confirm the benefits of the method proposed in this paper, the other seven kinds of competitive algorithms, such as Ant–lion Optimizer (ALO) and Grasshopper Optimization Algorithm (GOA), are compared. Experiments are conducted on four different kinds of images and the simulation results are presented in several indexes (such as computational time, maximum fitness, average fitness, variance of fitness and other indexes) at different threshold levels for each test image. By scrutinizing the results of the experiment, the superiority of the introduced method is demonstrated, which can meet the needs of image segmentation excellently.


Sign in / Sign up

Export Citation Format

Share Document