Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems

Author(s):  
Betül Sultan Yildiz ◽  
Nantiwat Pholdee ◽  
Sujin Bureerat ◽  
Ali Riza Yildiz ◽  
Sadiq M. Sait
2021 ◽  
Vol 24 (67) ◽  
pp. 18-35
Author(s):  
Hicham Deghbouch ◽  
Fatima Debbat

This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA is an optimization algorithm that demonstrated promising results in solving many engineering problems. However, the local search process of BA lacks efficient exploitation due to the random assignment of search agents inside the neighborhoods, which weakens the algorithm’s accuracy and results in slow convergence especially when solving higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes the strength of the GOA to enhance the exploitation phase of the BA. To prove the effectiveness of the proposed algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption.


2021 ◽  
Author(s):  
Betül Sultan Yildiz ◽  
Nantiwat Pholdee ◽  
Sujin Bureerat ◽  
Ali Riza Yildiz ◽  
Sadiq M. Sait

Author(s):  
Wei Liu ◽  
Shuai Yang ◽  
Zhiwei Ye ◽  
Qian Huang ◽  
Yongkun Huang

Threshold segmentation has been widely used in recent years due to its simplicity and efficiency. The method of segmenting images by the two-dimensional maximum entropy is a species of the useful technique of threshold segmentation. However, the efficiency and stability of this technique are still not ideal and the traditional search algorithm cannot meet the needs of engineering problems. To mitigate the above problem, swarm intelligent optimization algorithms have been employed in this field for searching the optimal threshold vector. An effective technique of lightning attachment procedure optimization (LAPO) algorithm based on a two-dimensional maximum entropy criterion is offered in this paper, and besides, a chaotic strategy is embedded into LAPO to develop a new algorithm named CLAPO. In order to confirm the benefits of the method proposed in this paper, the other seven kinds of competitive algorithms, such as Ant–lion Optimizer (ALO) and Grasshopper Optimization Algorithm (GOA), are compared. Experiments are conducted on four different kinds of images and the simulation results are presented in several indexes (such as computational time, maximum fitness, average fitness, variance of fitness and other indexes) at different threshold levels for each test image. By scrutinizing the results of the experiment, the superiority of the introduced method is demonstrated, which can meet the needs of image segmentation excellently.


Sign in / Sign up

Export Citation Format

Share Document