A novel approach for human skin detection using convolutional neural network

Author(s):  
Khawla Ben Salah ◽  
Mohamed Othmani ◽  
Monji Kherallah
Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


2019 ◽  
Vol 349 ◽  
pp. 145-155 ◽  
Author(s):  
Xinchen Lin ◽  
Yang Tang ◽  
Huaglory Tianfield ◽  
Feng Qian ◽  
Weimin Zhong

2021 ◽  
Vol 15 ◽  
Author(s):  
Jinhua Tian ◽  
Hailun Xie ◽  
Siyuan Hu ◽  
Jia Liu

The increasingly popular application of AI runs the risk of amplifying social bias, such as classifying non-white faces as animals. Recent research has largely attributed this bias to the training data implemented. However, the underlying mechanism is poorly understood; therefore, strategies to rectify the bias are unresolved. Here, we examined a typical deep convolutional neural network (DCNN), VGG-Face, which was trained with a face dataset consisting of more white faces than black and Asian faces. The transfer learning result showed significantly better performance in identifying white faces, similar to the well-known social bias in humans, the other-race effect (ORE). To test whether the effect resulted from the imbalance of face images, we retrained the VGG-Face with a dataset containing more Asian faces, and found a reverse ORE that the newly-trained VGG-Face preferred Asian faces over white faces in identification accuracy. Additionally, when the number of Asian faces and white faces were matched in the dataset, the DCNN did not show any bias. To further examine how imbalanced image input led to the ORE, we performed a representational similarity analysis on VGG-Face's activation. We found that when the dataset contained more white faces, the representation of white faces was more distinct, indexed by smaller in-group similarity and larger representational Euclidean distance. That is, white faces were scattered more sparsely in the representational face space of the VGG-Face than the other faces. Importantly, the distinctiveness of faces was positively correlated with identification accuracy, which explained the ORE observed in the VGG-Face. In summary, our study revealed the mechanism underlying the ORE in DCNNs, which provides a novel approach to studying AI ethics. In addition, the face multidimensional representation theory discovered in humans was also applicable to DCNNs, advocating for future studies to apply more cognitive theories to understand DCNNs' behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tahia Tazin ◽  
Sraboni Sarker ◽  
Punit Gupta ◽  
Fozayel Ibn Ayaz ◽  
Sumaia Islam ◽  
...  

Brain tumors are the most common and aggressive illness, with a relatively short life expectancy in their most severe form. Thus, treatment planning is an important step in improving patients’ quality of life. In general, image methods such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound images are used to assess tumors in the brain, lung, liver, breast, prostate, and so on. X-ray images, in particular, are utilized in this study to diagnose brain tumors. This paper describes the investigation of the convolutional neural network (CNN) to identify brain tumors from X-ray images. It expedites and increases the reliability of the treatment. Because there has been a significant amount of study in this field, the presented model focuses on boosting accuracy while using a transfer learning strategy. Python and Google Colab were utilized to perform this investigation. Deep feature extraction was accomplished with the help of pretrained deep CNN models, VGG19, InceptionV3, and MobileNetV2. The classification accuracy is used to assess the performance of this paper. MobileNetV2 had the accuracy of 92%, InceptionV3 had the accuracy of 91%, and VGG19 had the accuracy of 88%. MobileNetV2 has offered the highest level of accuracy among these networks. These precisions aid in the early identification of tumors before they produce physical adverse effects such as paralysis and other impairments.


Sign in / Sign up

Export Citation Format

Share Document