Maximum Degree Condition and Group Connectivity

2013 ◽  
Vol 30 (4) ◽  
pp. 1055-1063
Author(s):  
Xiaoxia Zhang ◽  
Xiangwen Li
2005 ◽  
Vol 2005 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Changping Wang

Letkbe an integer such thatk≥3, and letGbe a 2-connected graph of ordernwithn≥4k+1,kneven, and minimum degree at leastk+1. We prove that if the maximum degree of each pair of nonadjacent vertices is at leastn/2, thenGhas ak-factor excluding any given edge. The result of Nishimura (1992) is improved.


Author(s):  
Guowei Dai ◽  
Zan-Bo Zhang ◽  
Yicheng Hang ◽  
Xiaoyan Zhang

A spanning subgraph of a graph $G$ is called a path-factor of $G$ if its each component is a path. A path-factor is called a $\mathcal{P}_{\geq k}$-factor of $G$ if its each component admits at least $k$ vertices, where $k\geq2$. Zhang and Zhou [\emph{Discrete Mathematics}, \textbf{309}, 2067-2076 (2009)] defined the concept of $\mathcal{P}_{\geq k}$-factor covered graphs, i.e., $G$ is called a $\mathcal{P}_{\geq k}$-factor covered graph if it has a $\mathcal{P}_{\geq k}$-factor covering $e$ for any $e\in E(G)$. In this paper, we firstly obtain a minimum degree condition for a planar graph being a $\mathcal{P}_{\geq 2}$-factor and $\mathcal{P}_{\geq 3}$-factor covered graph, respectively. Secondly, we investigate the relationship between the maximum degree of any pairs of non-adjacent vertices and $\mathcal{P}_{\geq k}$-factor covered graphs, and obtain a sufficient condition for the existence of $\mathcal{P}_{\geq2}$-factor and $\mathcal{P}_{\geq 3}$-factor covered graphs, respectively.


2020 ◽  
Vol 1 (9) ◽  
pp. 28-30
Author(s):  
D. M. Zlatopolski

The article describes a number of little-known methods for translating natural numbers from one number system to another. The first is a method for converting large numbers from the decimal system to the binary system, based on multiple divisions of a given number and all intermediate quotients by 64 (or another number equal to 2n ), followed by writing the last quotient and the resulting remainders in binary form. Then two methods of mutual translation of decimal and binary numbers are described, based on the so-called «Horner scheme». An optimal variant of converting numbers into the binary number system by the method of division by 2 is also given. In conclusion, a fragment of a manuscript from the beginning of the late 16th — early 17th centuries is published with translation into the binary system by the method of highlighting the maximum degree of number 2. Assignments for independent work of students are offered.


2004 ◽  
Vol 4 (1) ◽  
pp. 62-89 ◽  
Author(s):  
Andreas Hoffjan

This study introduces content analysis as a method of examining the accountant's role. The empirical study is based on 73 advertisements, which are directed primarily at employees who are affected by the management accountant's work. The findings of the study indicate that the subject of accountancy is used particularly in connection with promises of “cost reduction.” Consequently, the majority of advertisements use the accountant stereotype of “savings personified.” In a professional context, the work ethic of the management accountant is given particular emphasis in the advertisements. He/she identifies him/herself with his/her task to the maximum degree, is regarded as loyal to his/her company and, for the most part, is well organized in his/her work. However, the characterization of the management accountant as a well disciplined company-person conflicts with the negative portrayal of his/her professional qualities. In advertisements, the management accountant is portrayed as a rather inflexible, passive, and uncreative specialist who, as a result of these qualities, often demotivates others. The personal characteristics of the management accountant are shown in a negative light. This gives him/her the unappealing image of a humorless, envious, dissociated, and ascetic corporate-person.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2021 ◽  
Vol 13 (2) ◽  
pp. 1-37
Author(s):  
Ivona Bezáková ◽  
Andreas Galanis ◽  
Leslie Ann Goldberg ◽  
Daniel Štefankovič

We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.


1990 ◽  
Vol 69 (6) ◽  
pp. 2239-2247 ◽  
Author(s):  
D. M. Pickles ◽  
D. Ogston ◽  
A. G. Macdonald

A novel cuvette was used to subject citrated platelet-rich plasma (PRP) to high hydrostatic pressure with negligible contamination by He (used for compression of the apparatus). Aggregation was induced at pressure by ADP and quantified turbidimetrically. The maximum degree of aggregation (MDA) was reduced from a control level of 82.2 to 53.6% by exposure to 101 ATA. Because decompression bubbles did not form, aggregation was also measured immediately after a compression cycle. After exposure to 101 ATA hydrostatic pressure, platelets responded normally to ADP at 1 ATA. In a matching apparatus, PRP was equilibrated with high partial pressures of inert gases. Normal physiological plasma Po2 and pH were maintained during equilibration. N2O (5 ATA) reduced the MDA from 86.5 (control) to 58.1%. N2 (51 ATA) reduced the MDA from 74.7 (control) to 51.6%, and 101 ATA Pn2 reduced the MDA from 78.0 (control) to 32.3%. He (100 ATA) reduced the MDA from 83.6 to 38.6%. It was concluded that platelet aggregation was relatively sensitive to hydrostatic pressure and less sensitive to inert gases than predicted from their anesthetic potency ratios.


2019 ◽  
Vol 93 (3) ◽  
pp. 317-327 ◽  
Author(s):  
Radek Hušek ◽  
Lucie Mohelníková ◽  
Robert Šámal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document