scholarly journals Fractional Matchings, Component-Factors and Edge-Chromatic Critical Graphs

Author(s):  
Antje Klopp ◽  
Eckhard Steffen

AbstractThe first part of the paper studies star-cycle factors of graphs. It characterizes star-cycle factors of a graph G and proves upper bounds for the minimum number of $$K_{1,2}$$ K 1 , 2 -components in a $$\{K_{1,1}, K_{1,2}, C_n:n\ge 3\}$$ { K 1 , 1 , K 1 , 2 , C n : n ≥ 3 } -factor of a graph G. Furthermore, it shows where these components are located with respect to the Gallai–Edmonds decomposition of G and it characterizes the edges which are not contained in any $$\{K_{1,1}, K_{1,2}, C_n:n\ge 3\}$$ { K 1 , 1 , K 1 , 2 , C n : n ≥ 3 } -factor of G. The second part of the paper proves that every edge-chromatic critical graph G has a $$\{K_{1,1}, K_{1,2}, C_n:n\ge 3\}$$ { K 1 , 1 , K 1 , 2 , C n : n ≥ 3 } -factor, and the number of $$K_{1,2}$$ K 1 , 2 -components is bounded in terms of its fractional matching number. Furthermore, it shows that for every edge e of G, there is a $$\{K_{1,1}, K_{1,2}, C_n:n\ge 3\}$$ { K 1 , 1 , K 1 , 2 , C n : n ≥ 3 } -factor F with $$e \in E(F)$$ e ∈ E ( F ) . Consequences of these results for Vizing’s critical graph conjectures are discussed.

10.37236/2824 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Goedgebeur ◽  
Stanisław P. Radziszowski

Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: $R(3,10) \le 42$, $R(3,11) \le 50$, $R(3,13) \le 68$, $R(3,14) \le 77$, $R(3,15) \le 87$, and $R(3,16) \le 98$. All of them are improvements by one over the previously best known bounds. Let $e(3,k,n)$ denote the minimum number of edges in any triangle-free graph on $n$ vertices without independent sets of order $k$. The new upper bounds on $R(3,k)$ are obtained by completing the computation of the exact values of $e(3,k,n)$ for all $n$ with $k \leq 9$ and for all $n \leq 33$ for $k = 10$, and by establishing new lower bounds on $e(3,k,n)$ for most of the open cases for $10 \le k \le 15$. The enumeration of all graphs witnessing the values of $e(3,k,n)$ is completed for all cases with $k \le 9$. We prove that the known critical graph for $R(3,9)$ on 35 vertices is unique up to isomorphism. For the case of $R(3,10)$, first we establish that $R(3,10)=43$ if and only if $e(3,10,42)=189$, or equivalently, that if $R(3,10)=43$ then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that $R(3,10) \le 42$.


10.37236/8857 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Zi-Xia Song ◽  
Jingmei Zhang

Given an integer $r\geqslant 1$ and graphs $G, H_1, \ldots, H_r$, we write $G \rightarrow ({H}_1, \ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\in\{1, \ldots, r\}$. A non-complete graph $G$ is $(H_1, \ldots, H_r)$-co-critical if $G \nrightarrow ({H}_1, \ldots, {H}_r)$, but $G+e\rightarrow ({H}_1, \ldots, {H}_r)$ for every edge $e$ in $\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191–196], we study the minimum number of edges over all $(K_t, \mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201–207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\geqslant4 $ and $k\geqslant\max\{6, t\}$, there exists a constant $c(t, k)$ such that, for all $n \ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\geqslant \left(\frac{4t-9}{2}+\frac{1}{2}\left\lceil \frac{k}{2} \right\rceil\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\in\{4,5\}$ and $k\geqslant6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


Author(s):  
Saieed Akbari ◽  
Abdullah Alazemi ◽  
Milica Andjelic

The energy of a graph G, ?(G), is the sum of absolute values of the eigenvalues of its adjacency matrix. The matching number ?(G) is the number of edges in a maximum matching. In this paper, for a connected graph G of order n with largest vertex degree ? ? 6 we present two new upper bounds for the energy of a graph: ?(G) ? (n-1)?? and ?(G) ? 2?(G)??. The latter one improves recently obtained bound ?(G) ? {2?(G)?2?e + 1, if ?e is even; ?(G)(? a + 2?a + ?a-2?a), otherwise, where ?e stands for the largest edge degree and a = 2(?e + 1). We also present a short proof of this result and several open problems.


2020 ◽  
Vol 26 (1) ◽  
pp. 55-63
Author(s):  
Girish V R ◽  
Usha P

A dominating set D of a graph G = (V;E) is a split dominating set ifthe induced graph hV 􀀀 Di is disconnected. The split domination number s(G)is the minimum cardinality of a split domination set. A graph G is called vertexsplit domination critical if s(G􀀀v) s(G) for every vertex v 2 G. A graph G iscalled edge split domination critical if s(G + e) s(G) for every edge e in G. Inthis paper, whether for some standard graphs are split domination vertex critical ornot are investigated and then characterized 2- ns-critical and 3- ns-critical graphswith respect to the diameter of a graph G with vertex removal. Further, it is shownthat there is no existence of s-critical graph for edge addition.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


2010 ◽  
Vol 4 (1) ◽  
pp. 197-206 ◽  
Author(s):  
D.A. Mojdeh ◽  
P.Y. Firoozi

In this note the (?,3)-critical graphs are fairly classified. We show that a (?,k)- critical graph is not necessarily a (?,k?)-critical for k?? k and k,k? E {1,2,3}. The (2,3)-critical graphs are definitely characterized. Also the properties of (?,3)-critical graphs are verified once their edge connectivity are 3.


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Khalid A. Alsatami ◽  
Hong-Jian Lai ◽  
Xindong Zhang

A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.


2007 ◽  
Vol 57 (5) ◽  
Author(s):  
Vladimir Samodivkin

AbstractThe k-restricted domination number of a graph G is the minimum number d k such that for any subset U of k vertices of G, there is a dominating set in G including U and having at most d k vertices. Some new upper bounds in terms of order and degrees for this number are found.


Sign in / Sign up

Export Citation Format

Share Document