scholarly journals Independent Sets in ($$P_4+P_4$$,Triangle)-Free Graphs

Author(s):  
Raffaele Mosca

AbstractThe Maximum Weight Independent Set Problem (WIS) is a well-known NP-hard problem. A popular way to study WIS is to detect graph classes for which WIS can be solved in polynomial time, with particular reference to hereditary graph classes, i.e., defined by a hereditary graph property or equivalently by forbidding one or more induced subgraphs. Given two graphs G and H, $$G+H$$ G + H denotes the disjoint union of G and H. This manuscript shows that (i) WIS can be solved for ($$P_4+P_4$$ P 4 + P 4 , Triangle)-free graphs in polynomial time, where a $$P_4$$ P 4 is an induced path of four vertices and a Triangle is a cycle of three vertices, and that in particular it turns out that (ii) for every ($$P_4+P_4$$ P 4 + P 4 , Triangle)-free graph G there is a family $${{\mathcal {S}}}$$ S of subsets of V(G) inducing (complete) bipartite subgraphs of G, which contains polynomially many members and can be computed in polynomial time, such that every maximal independent set of G is contained in some member of $${\mathcal {S}}$$ S . These results seem to be harmonic with respect to other polynomial results for WIS on [subclasses of] certain $$S_{i,j,k}$$ S i , j , k -free graphs and to other structure results on [subclasses of] Triangle-free graphs.

2015 ◽  
Vol 25 (2) ◽  
pp. 295-309 ◽  
Author(s):  
Jing Zhang ◽  
Shu-Ming Zhou ◽  
Li Xu ◽  
Wei Wu ◽  
Xiucai Ye

Abstract The connected dominating set (CDS) has become a well-known approach for constructing a virtual backbone in wireless sensor networks. Then traffic can forwarded by the virtual backbone and other nodes turn off their radios to save energy. Furthermore, a smaller CDS incurs fewer interference problems. However, constructing a minimum CDS is an NP-hard problem, and thus most researchers concentrate on how to derive approximate algorithms. In this paper, a novel algorithm based on the induced tree of the crossed cube (ITCC) is presented. The ITCC is to find a maximal independent set (MIS), which is based on building an induced tree of the crossed cube network, and then to connect the MIS nodes to form a CDS. The priority of an induced tree is determined according to a new parameter, the degree of the node in the square of a graph. This paper presents the proof that the ITCC generates a CDS with a lower approximation ratio. Furthermore, it is proved that the cardinality of the induced trees is a Fibonacci sequence, and an upper bound to the number of the dominating set is established. The simulations show that the algorithm provides the smallest CDS size compared with some other traditional algorithms.


2020 ◽  
Author(s):  
Timothy Gowers ◽  
Oliver Janzer

[Ramsey's Theorem](https://en.wikipedia.org/wiki/Ramsey%27s_theorem) is one of the most prominent results in graph theory. In its simplest form, it asserts that every sufficiently large two-edge-colored complete graph contains a large monochromatic complete subgraph. This theorem has been generalized to a plethora of statements asserting that every sufficiently large structure of a given kind contains a large "tame" substructure. The article concerns a closely related problem: for a structure with a given property, find a substructure possessing an even stronger property. For example, what is the largest $K_3$-free induced subgraph of an $n$-vertex $K_4$-free graph? The answer to this question is approximately $n^{1/2}$. The lower bound is easy. If a given graph has a vertex of degree at least $n^{1/2}$, then its neighbors induce a $K_3$-free subgraph with at least $n^{1/2}$ vertices. Otherwise, a greedy procedure yields an independent set of size almost $n^{1/2}$. The argument generalizes to $K_s$-free induced subgraphs of $K_{s+1}$-free graphs. Dudek, Retter and Rödl provided a construction showing that the exponent $1/2$ cannot be improved and asked whether the same is the case for $K_s$-free induced subgraphs of $K_{s+2}$-free graphs. The authors answer this question by providing a construction of $K_{s+2}$-free $n$-vertex graphs with no $K_s$-free induced subgraph with $n^{\alpha_s}$ vertices with $\alpha_s<1/2$ for every $s\ge 3$. Their arguments extend to the case of $K_t$-free graphs with no large $K_s$-free induced subgraph for $s+2\le t\le 2s-1$ and $s\ge 3$.


10.37236/9267 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
N. R. Aravind ◽  
Stijn Cambie ◽  
Wouter Cames van Batenburg ◽  
Rémi De Joannis de Verclos ◽  
Ross J. Kang ◽  
...  

Motivated by a recent conjecture of the first author, we prove that every properly coloured triangle-free graph of chromatic number $\chi$ contains a rainbow independent set of size $\lceil\frac12\chi\rceil$. This is sharp up to a factor $2$. This result and its short proof have implications for the related notion of chromatic discrepancy. Drawing inspiration from both structural and extremal graph theory, we conjecture that every triangle-free graph of chromatic number $\chi$ contains an induced cycle of length $\Omega(\chi\log\chi)$ as $\chi\to\infty$. Even if one only demands an induced path of length $\Omega(\chi\log\chi)$, the conclusion would be sharp up to a constant multiple. We prove it for regular girth $5$ graphs and for girth $21$ graphs. As a common strengthening of the induced paths form of this conjecture and of Johansson's theorem (1996), we posit the existence of some $c >0$ such that for every forest $H$ on $D$ vertices, every triangle-free and induced $H$-free graph has chromatic number at most $c D/\log D$. We prove this assertion with 'triangle-free' replaced by 'regular girth 5'.


2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


2019 ◽  
Vol 5 (2) ◽  
pp. 1-27
Author(s):  
Martin Burtscher ◽  
Sindhu Devale ◽  
Sahar Azimi ◽  
Jayadharini Jaiganesh ◽  
Evan Powers

10.37236/2732 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
David S. Gunderson ◽  
Hanno Lefmann

If $G$ is a large $K_k$-free graph, by Ramsey's theorem, a large set of vertices is independent. For graphs whose vertices are positive integers, much recent work has been done to identify what arithmetic structure is possible in an independent set. This paper addresses  similar problems: for graphs whose vertices are affine or linear spaces over a finite field,  and when the vertices of the graph are elements of an arbitrary Abelian group.


10.37236/2882 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Raphael Yuster

Let $h$ be a given positive integer. For a graph with $n$ vertices and $m$ edges, what is the maximum number of pairwise edge-disjoint {\em induced} subgraphs, each having  minimum degree at least $h$? There are examples for which this number is $O(m^2/n^2)$. We prove that this bound is achievable for all graphs with polynomially many edges. For all $\epsilon > 0$, if $m \ge n^{1+\epsilon}$, then there are always $\Omega(m^2/n^2)$ pairwise edge-disjoint induced subgraphs, each having  minimum degree at least $h$. Furthermore, any two subgraphs intersect in an independent set of size at most $1+ O(n^3/m^2)$, which is shown to be asymptotically optimal.


Sign in / Sign up

Export Citation Format

Share Document