scholarly journals On the Number of Forests and Connected Spanning Subgraphs

Author(s):  
Márton Borbényi ◽  
Péter Csikvári ◽  
Haoran Luo

AbstractLet F(G) be the number of forests of a graph G. Similarly let C(G) be the number of connected spanning subgraphs of a connected graph G. We bound F(G) and C(G) for regular graphs and for graphs with a fixed average degree. Among many other things we study $$f_d=\sup _{G\in {\mathcal {G}}_d}F(G)^{1/v(G)}$$ f d = sup G ∈ G d F ( G ) 1 / v ( G ) , where $${\mathcal {G}}_d$$ G d is the family of d-regular graphs, and v(G) denotes the number of vertices of a graph G. We show that $$f_3=2^{3/2}$$ f 3 = 2 3 / 2 , and if $$(G_n)_n$$ ( G n ) n is a sequence of 3-regular graphs with the length of the shortest cycle tending to infinity, then $$\lim _{n\rightarrow \infty }F(G_n)^{1/v(G_n)}=2^{3/2}$$ lim n → ∞ F ( G n ) 1 / v ( G n ) = 2 3 / 2 . We also improve on the previous best bounds on $$f_d$$ f d for $$4\le d\le 9$$ 4 ≤ d ≤ 9 .

10.37236/5173 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles and a special class of graphs of maximum degree 3, every connected graph can be decomposed into 3 locally irregular subgraphs. Using a combination of a probabilistic approach and some known theorems on degree constrained subgraphs of a given graph, we prove this to hold for graphs of minimum degree at least $10^{10}$. This problem is strongly related to edge colourings distinguishing neighbours by the pallets of their incident colours and to the 1-2-3 Conjecture. In particular, the contribution of this paper constitutes a strengthening of a result of Addario-Berry, Aldred, Dalal and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244].


2011 ◽  
Vol 32 (6) ◽  
pp. 1805-1835 ◽  
Author(s):  
MIKLÓS ABÉRT ◽  
GÁBOR ELEK

AbstractWe study profinite actions of residually finite groups in terms of weak containment. We show that two strongly ergodic profinite actions of a group are weakly equivalent if and only if they are isomorphic. This allows us to construct continuum many pairwise weakly inequivalent free actions of a large class of groups, including free groups and linear groups with property (T). We also prove that for chains of subgroups of finite index, Lubotzky’s property (τ) is inherited when taking the intersection with a fixed subgroup of finite index. That this is not true for families of subgroups in general leads to the question of Lubotzky and Zuk: for families of subgroups, is property (τ) inherited by the lattice of subgroups generated by the family? On the other hand, we show that for families of normal subgroups of finite index, the above intersection property does hold. In fact, one can give explicit estimates on how the spectral gap changes when passing to the intersection. Our results also have an interesting graph theoretical consequence that does not use the language of groups. Namely, we show that an expanding covering tower of finite regular graphs is either bipartite or stays bounded away from being bipartite in the normalized edge distance.


Author(s):  
Gary Chartrand ◽  
Sergio Ruiz ◽  
Curtiss E. Wall

AbstractA near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


1998 ◽  
Vol 9 ◽  
pp. 219-245 ◽  
Author(s):  
B. Vandegriend ◽  
J. Culberson

Using an improved backtrack algorithm with sophisticated pruning techniques, we revise previous observations correlating a high frequency of hard to solve Hamiltonian Cycle instances with the Gn,m phase transition between Hamiltonicity and non-Hamiltonicity. Instead all tested graphs of 100 to 1500 vertices are easily solved. When we artificially restrict the degree sequence with a bounded maximum degree, although there is some increase in difficulty, the frequency of hard graphs is still low. When we consider more regular graphs based on a generalization of knight's tours, we observe frequent instances of really hard graphs, but on these the average degree is bounded by a constant. We design a set of graphs with a feature our algorithm is unable to detect and so are very hard for our algorithm, but in these we can vary the average degree from O(1) to O(n). We have so far found no class of graphs correlated with the Gn,m phase transition which asymptotically produces a high frequency of hard instances.


2019 ◽  
Vol 12 (07) ◽  
pp. 2050009
Author(s):  
Siwaporn Mamart ◽  
Chalermpong Worawannotai

Merging the first and third classes in a connected graph is the operation of adding edges between all vertices at distance 3 in the original graph while keeping the original edges. We determine when merging the first and third classes in a bipartite distance-regular graph produces a distance-regular graph.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


10.37236/2784 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Alan Frieze ◽  
Charalampos E. Tsourakakis

An edge colored graph $G$ is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph $G$, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold $p=\frac{\log n+\omega}{n}$ where $\omega=\omega(n)\to\infty$ and ${\omega}=o(\log{n})$ and of random $r$-regular graphs where $r \geq 3$ is a fixed integer. Specifically, we prove that the rainbow connectivity $rc(G)$ of $G=G(n,p)$ satisfies $rc(G) \sim \max\{Z_1,\text{diam}(G)\}$ with high probability (whp). Here $Z_1$ is the number of vertices in $G$ whose degree equals 1 and the diameter of $G$ is asymptotically equal to $\frac{\log n}{\log\log n}$ whp. Finally, we prove that the rainbow connectivity $rc(G)$ of the random $r$-regular graph $G=G(n,r)$ whp satisfies $rc(G) =O(\log^{2\theta_r}{n})$ where $\theta_r=\frac{\log (r-1)}{\log (r-2)}$ when $r\geq 4$ and $rc(G) =O(\log^4n)$ whp when $r=3$.


2019 ◽  
Vol 21 (2) ◽  
pp. 496-503
Author(s):  
Alexei B. Bodrikov

Attitude to Motherland plays an important role in Russian linguistic culture. The sphere is formed by a number of concepts, such as Fatherland, home, family, children, warrior, etc. The concept voin (warrior) has not been studied in modern linguistics, which adds relevance to the present research. Military concepts bear a large cultural load and make up an important component of the society. In Russian linguistic culture, a warrior is a defender, the one who protects the peace of the family, relatives, friends, and Motherland as a whole. Military concepts are just beginning to attract the attention of modern researchers. The present paper features the symbolic signs of the concept voin (warrior). The analysis is based on the constructions with the lexeme voin (warrior) from the Russian National Corps. One of the most common symbols of a warrior is weapon. The article focuses on the symbolic equipment signs of the concept, i.e. helmet, shield, and sword. The research employed conceptual, descriptive, and static analysis methods. The following symbolic stereotypical signs were especially frequent: helmet (24 %), armament (23.7 %), shield (22.8 %), and sword (10 %). The average degree of frequency was observed in such cognitive signs as chainmail (5.2 %), armor (4.7 %), spear (2.3 %), armor (2.1 %), and bow (1.6 %). Other signs demonstrated a low degree of frequency.


10.37236/3305 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Miquel Àngel Fiol

The spectral excess theorem for distance-regular graphs states that a regular (connected) graph is distance-regular if and only if its spectral-excess equals its average excess. A bipartite graph $\Gamma$ is distance-biregular when it is distance-regular around each vertex and the intersection array only depends on the stable set such a vertex belongs to. In this note we derive a new version of the spectral excess theorem for bipartite distance-biregular graphs.


Sign in / Sign up

Export Citation Format

Share Document