Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil

2012 ◽  
Vol 49 (4) ◽  
pp. 487-493 ◽  
Author(s):  
Md. Mozammel Haque ◽  
Sang Yoon Kim ◽  
Prabhat Pramanik ◽  
Gun-Yeob Kim ◽  
Pil Joo Kim
2010 ◽  
Vol 138 (3-4) ◽  
pp. 343-347 ◽  
Author(s):  
Chang Hoon Lee ◽  
Ki Do Park ◽  
Ki Yuol Jung ◽  
Muhammad Aslam Ali ◽  
Dokyoung Lee ◽  
...  

2017 ◽  
Vol 55 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Janna M. Barel ◽  
Thomas W. Kuyper ◽  
Wietse de Boer ◽  
Jacob C. Douma ◽  
Gerlinde B. De Deyn

HortScience ◽  
2016 ◽  
Vol 51 (8) ◽  
pp. 1038-1044 ◽  
Author(s):  
David M. Butler ◽  
Gary E. Bates ◽  
Sarah E. Eichler Inwood

Research is lacking on the impact of alternative reduced tillage (RT) systems on vegetable crop performance and soil quality, especially in organic production systems, where weed control cannot rely on synthetic herbicides. A 2-year field study was implemented in Aug. 2010 in Knoxville, TN, to evaluate cover crop–based systems for organic vegetable production either with or without spring tillage. Treatments, all organically managed, included 1) Till (+ACC), spring tillage of a winter cover crop with aboveground cover crop biomass (ACC) retained and soil covered by polyethylene mulch; 2) Till (−ACC), spring tillage of a winter cover crop with aboveground cover crop biomass (ACC) removed before tillage and soil covered by polyethylene mulch; and 3) RT system with no spring tillage and mechanically terminated winter cover crop residue on the soil surface. Vegetable crops of eggplant (Solanum melongena L.) and watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] were planted in 2011 and 2012, respectively. Crop yield, cover crop biomass accumulation, soil N and C dynamics, and weed density were assessed. Marketable eggplant yield and marketable watermelon yield did not differ among treatments, but weed density was higher in the RT system. Measures of soil quality after 2 years of the study indicated that particulate organic matter-carbon (POM-C) and -nitrogen (POM-N) were highest in the RT treatment, a significant increase as compared with values at the beginning of the study. As a measure of the active fraction of soil organic matter, this indicates that the RT system may best maintain and improve soil quality in similar regional organic vegetable cropping systems. As indicated by measures of soil quality and crop yield, removal of aboveground cover crop biomass did not negatively impact the Till (−ACC) system as compared with the Till (+ACC).


2012 ◽  
Vol 366 (1-2) ◽  
pp. 273-286 ◽  
Author(s):  
Sang Yoon Kim ◽  
Chang Hoon Lee ◽  
Jessie Gutierrez ◽  
Pil Joo Kim

2011 ◽  
Vol 48 (1) ◽  
pp. 86-98 ◽  
Author(s):  
E. Raymond Hunt ◽  
W. Dean Hively ◽  
Greg W. McCarty ◽  
Craig S. T Daughtry ◽  
Patrick J. Forrestal ◽  
...  

2006 ◽  
Vol 98 (4) ◽  
pp. 946-950 ◽  
Author(s):  
Dennis E. Rowe ◽  
Timothy E. Fairbrother ◽  
Karamat A. Sistani

Sign in / Sign up

Export Citation Format

Share Document