Importance of Harvesting Time of Winter Cover Crop Rye as Green Manure on Controlling CH4 Production in Paddy Soil Condition

Author(s):  
Sang Yoon Kim ◽  
Hyo Suk Gwon ◽  
Yong Gwon Park ◽  
Hyun Young Hwang ◽  
Pil Joo Kim
2012 ◽  
Vol 366 (1-2) ◽  
pp. 273-286 ◽  
Author(s):  
Sang Yoon Kim ◽  
Chang Hoon Lee ◽  
Jessie Gutierrez ◽  
Pil Joo Kim

2006 ◽  
Vol 98 (4) ◽  
pp. 946-950 ◽  
Author(s):  
Dennis E. Rowe ◽  
Timothy E. Fairbrother ◽  
Karamat A. Sistani

2018 ◽  
Vol 47 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Amanda L Buchanan ◽  
Cerruti R R Hooks

2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


2008 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Xin-Gen Zhou ◽  
Kathryne L. Everts

Watermelon gummy stem blight (GSB) management using a green manure cover crop, the weather-based disease forecasting program ‘Melcast,’ and bio- and reduced-risk fungicides was evaluated in Maryland. Soil incorporation of hairy vetch winter cover crop suppressed percent foliage affected by GSB in comparison to winter fallow in three of five trials conducted in 2004 and 2005. Programs of Reynoutria sachalinensis, Bacillus subtilis, or harpin protein applied in rotation with chlorothalonil provided control of GSB as effectively as did EBDC, boscalid, or cyprodinil plus fludioxonil. However, the bio-fungicide programs did not perform as well as chlorothalonil alternated with pyraclostrobin plus boscalid in 2005. Melcast-scheduled sprays of B. subtilis in rotation with chlorothalonil resulted in an average of 73% less synthetic fungicide applied to watermelon. However, GSB reduction in the B. subtilis program, although similar in 2005, was less that that obtained with chlorothalonil alone in 2004. These results suggest that the combined use of green manure with Melcast-scheduled fungicide applications could effectively manage GSB and reduce fungicide use. Biofungicides alternated with chlorothalonil also minimized use of synthetic fungicides and were effective under some conditions, but should be used with caution. Accepted for publication 22 September 2008. Published 20 November 2008.


Sign in / Sign up

Export Citation Format

Share Document