scholarly journals Correction to: Phosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experiments

2018 ◽  
Vol 54 (6) ◽  
pp. 791-791 ◽  
Author(s):  
Yi Cheng ◽  
Jing Wang ◽  
Nan Sun ◽  
Minggang Xu ◽  
Jinbo Zhang ◽  
...  
2018 ◽  
Vol 54 (6) ◽  
pp. 783-789 ◽  
Author(s):  
Yi Cheng ◽  
Jing Wang ◽  
Nan Sun ◽  
Minggang Xu ◽  
Jinbo Zhang ◽  
...  

2021 ◽  
Author(s):  
Felix Spiegel ◽  
Lucia Fuchslueger ◽  
Alberto Canarini ◽  
Jörg Schnecker ◽  
Hannes Schmidt ◽  
...  

<p>Fertilization experiments provide insights into elemental imbalances in soil microbial communities and their consequences for soil nutrient cycling. By addition of selected nutrients, other nutrients become deficient and limiting for soil microorganisms as well as for plants. In this study we focused on microbial nitrogen (N) cycling in a long-term nutrient manipulation experiment. In many soils, the rate-limiting step in N cycling is depolymerization of high-molecular-weight nitrogen compounds (e.g., proteins) to oligomers (e.g., peptides) and monomers (e.g., amino acids) rather than the subsequent steps of mineralization (ammonification) and nitrification. The aim of our study was to determine whether nutrient deficiency directly or indirectly – via changes in plant carbon (C) inputs - affects soil microbial N processing.</p><p>We collected soil samples from a fertilization experiment, established in 1946 on a hay meadow close to Admont (Styria, Austria). The field experiment consisted of a full factorial combination of inorganic N, P, and K fertilization and a control with no fertilizers. Furthermore, liming (Ca-addition) and organic fertilizer application treatments (solid manure and liquid slurry) were established. In the experiment, plant biomass is harvested three times per year, inducing strong nutrient limitation in plots that have not received nutrient additions (fully deficient or deficient in a single element). We determined gross rates of microbial protein depolymerization, N-mineralization and nitrification via isotope pool dilution assays with <sup>15</sup>N-labeled amino acids, NH<sub>4</sub><sup>+</sup>, and NO<sub>3</sub><sup>-</sup>. We hypothesized that N deficiency (lack of N fertilization) would stimulate microbial N mining (depolymerization), and reduce subsequent N mineralization and nitrification. In contrast, we expected that organic fertilization would alleviate microbial C and N limitations, reducing N depolymerization rates and increasing mineralization and nitrification.</p><p>Our results show that organically fertilized and limed soils have significantly lower gross protein depolymerization rates than plots receiving inorganic N. No significant differences were found comparing gross N-mineralization and gross nitrification rates across the different treatments. Given the higher rates of protein depolymerization in inorganically fertilized soils as compared to organically fertilized and limed soils, microbial N processes seem to be controlled by plant C input and/or soil pH rather than by direct soil nutrient availability. However, depolymerization of macromolecular N does not only supply N to the soil microbial community but also organic C. Thus, the reduced plant C input compared to fully fertilized soils may have caused microorganisms to increase their mining for a C-containing energy source, thereby increasing protein depolymerization rates. In summary, this study suggests that long term nutrient deficiency or nutrient imbalances may affect soil nutrient cycling indirectly by changing plant C inputs (via reduced primary production) and/or changing soil pH, rather than directly, by nutrient availability. This further indicates that soil microbial communities are rather C than nutrient limited.</p><p> </p>


2010 ◽  
Vol 59 (2) ◽  
pp. 255-268
Author(s):  
István Harmati

Sekély humuszos szintű, erősen karbonátos réti talajon kialakult természetes (Achilleo-Festucetum pseudovinae) gyepen beállított tartamkísérletekben vizsgáltuk a műtrágyázás kérdéseit a gyep növényi összetételének megjavítása, termésének növelése és minősége javítása céljából. A kísérlet humuszban gazdag, nitrogénnel és káliummal igen jól ellátott, de foszforban szegény talaján az N- és P-műtrágya 2-2 adagját szólóban és kombinációikban alkalmaztuk. Az öntözetlen kísérletet 28, az öntözöttet 14 éven át folyamatosan, széleskörűen vizsgáltuk. Megállapításainkat a következőkben foglaljuk össze. – A gyep növényi összetételét a N- és a P-műtrágyák adagjaiktól és kombinációiktól függően megváltoztatták. A nitrogén a füvek, a foszfor a pillangósok versenyképességét fokozta és segítette elő növekedését. Az önmagában alkalmazott N-műtrágya a talaj nagyfokú P-szegénysége miatt nem gyakorolt pozitív hatást a gyepre. A P-műtrágya viszont kedvező változásokat okozott: a füvek fejlődésének elősegítése mellett nagymértékben növelte a pillangósok borítási értékét és tömegarányát, különösen az öntözött parcellákon. Öntözetlen viszonyok között a réti perje (Poa pratensis), a sovány csenkesz (Festuca pseudovina) és a komlós lucerna (Medicago lupulina) alkotta a gyep termésének túlnyomó részét, néhány egyéb fű- és pillangósvirágú komponens társaságában. Az öntözött kísérletben a pillangósok abszolút uralma mellett gyakran a réti perje jutott vezető szerephez. A pillangósok közül az eperhere (Trifolium fragiferum), a komlós lucerna (Medicago lupulina) és a vörös here (Trifolium pratense) váltakozva jutott uralomra. Az időjárás nagyban befolyásolta a gyep pillangós komponenseinek tömegarányát. Az NP kombinációkban a pillangósok tömegaránya erősen lecsökkent, különösen a nagyobb N-adag használata esetén. Öntözetlen területen a sovány csenkesz és a réti perje változó arányban alkotta a gyep termésének túlnyomó részét. Az öntözött parcellákon azonban a réti perje abszolút uralkodóvá vált és az egyre jobban előretörő tarackbúza (Agropyron repens) is jelentősen részt vett a termés kialakításában, elsősorban a nagyobb N-dózisú kombinációkban. A kísérlet 3. évtizedében a csapadékos években megjelent a francia perje (Arrhenatherum elatius) és a réti csenkesz (Festuca pratensis) is. – A gyep termését az önmagában alkalmazott N-műtrágya nem növelte jelentősen. Ezzel szemben a P-műtrágya nagy hatékonysággal 2–4-szeresére (3–5 t·ha–1-ra) növelte a gyep szénatermését, elsősorban a pillangósok nagyarányú térhódítása révén. 1 kg P2O5 öntözetlen körülmények között 43, míg öntözöttben 68 kg szénaterméstöbbletet eredményezett, sokévi átlagban. A 90 kg P2O5·ha–1 adag néhány év után soknak bizonyult. A legjobb eredményt a 200 kg N·ha–1 + 60 kg P2O5·ha–1 adaggal értük el, amellyel az öntözetlen területen – 28 év átlagában – 7,87, öntözötten – 14 év átlagában – 7,12 t·ha–1 szénatermést kaptunk. Az időjárás nagymértékben befolyásolta a termés mennyiségét és minőségét, legfőképpen a pillangósok tömegarányának változása révén, különösen az öntözetlen kísérletben. A három növedék tömegének aránya 7 évi átlagban, az öntözetlen kísérletben a szóló foszforkezeléseknél 48:37:15%, míg az NP kombinációknál 56:35:9% volt. Az öntözött területen ezek az arányok az előbbi sorrendben: 39:49:12, illetve 43:41:16%. A nitrogénből számított nyersfehérjehozam sokévi átlagban az öntözetlen kísérletben 428–550, míg az öntözöttben 560–760 kg·ha–1 volt. – A talaj felvehető tápanyagtartalma az évek során jelentősen megváltozott, különösen a talaj 0–10 cm-es rétegében. A P-trágyázás önmagában, de az NP kombinációiban is az adagoktól, illetve az ezek hatására kialakult termések mennyiségétől függő mértékben növelte a talaj P-tartalmát. A legjobbnak a 200 kg N·ha–1 + 60 kg P2O5·ha–1 kezelésű parcellákban bizonyult: a kísérlet 22. évében a talaj 0–10 cm-es rétegében a P-tartalom 260 mg P2O5·kg–1 lett, ami az erősen karbonátos talajok esetében igen jó P-ellátottságnak mondható. A K-ellátottság azonban az NP-kezeléseknél az optimális szint alá csökkent (172 mg K2O·kg–1) a termések nagyarányú K-kivonása következtében. Ezért néhány évi NP-trágyázás után K-pótlásra is szükség van.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanjutha Shanmugam ◽  
Sasha N. Jenkins ◽  
Bede S. Mickan ◽  
Noraini Md Jaafar ◽  
Falko Mathes ◽  
...  

AbstractCo-application of biochar and biosolids to soil has potential to mitigate N leaching due to physical and chemical properties of biochar. Changes in N cycling pathways in soil induced by co-application of biological amendments could further mitigate N loss, but this is largely unexplored. The aim of this study was to determine whether co-application of a biochar and a modified biosolids product to three pasture soils differing in texture could alter the relative abundance of N cycling genes in soil sown with subterranean clover. The biosolids product contained lime and clay and increased subterranean clover shoot biomass in parallel with increases in soil pH and soil nitrate. Its co-application with biochar similarly increased plant growth and soil pH with a marked reduction in nitrate in two coarse textured soils but not in a clayey soil. While application of the biosolids product altered in silico predicted N cycling functional genes, there was no additional change when applied to soil in combination with biochar. This supports the conclusion that co-application of the biochar and biosolids product used here has potential to mitigate loss of N in coarse textured soils due to N adsoption by the biochar and independently of microbial N pathways.


2018 ◽  
Vol 30 (4) ◽  
pp. 406-416 ◽  
Author(s):  
Zhongmin Dai ◽  
Yong Li ◽  
Xiaojie Zhang ◽  
Jianjun Wu ◽  
Yu Luo ◽  
...  

2016 ◽  
Vol 13 (1) ◽  
pp. 313-321 ◽  
Author(s):  
A. R. Armitage ◽  
J. W. Fourqurean

Abstract. The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50–100 %. Soil carbon content slightly decreased ( ∼  10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m−2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Kazumori Mise ◽  
Hitoshi Moro ◽  
Takashi Kunito ◽  
Keishi Senoo ◽  
Shigeto Otsuka

Long-term fertilization experiments are a useful way to elucidate the impacts of fertilization on soil ecosystems. Here, we report the prokaryotic community structure in experimental field soil after 80 years of successive fertilization.


Geoderma ◽  
2019 ◽  
Vol 353 ◽  
pp. 116-124 ◽  
Author(s):  
Jin Liu ◽  
Peng Sui ◽  
Barbara J. Cade-Menun ◽  
Yongfeng Hu ◽  
Jianjun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document