scholarly journals The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review

Author(s):  
Yuki Audette ◽  
Katelyn A. Congreves ◽  
Kimberley Schneider ◽  
Geovanna C. Zaro ◽  
Amanda L. P. Nunes ◽  
...  

AbstractTo improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.

2011 ◽  
Vol 52 (No. 12) ◽  
pp. 531-543 ◽  
Author(s):  
X. Liu ◽  
S.J. Herbert ◽  
A.M. Hashemi ◽  
X. Zhang ◽  
G. Ding

Soil organic carbon (SOC) is the most often reported attribute and is chosen as the most important indicator of soil quality and agricultural sustainability. In this review, we summarized how cultivation, crop rotation, residue and tillage management, fertilization and monoculture affect soil quality, soil organic matter (SOM) and carbon transformation. The results confirm that SOM is not only a source of carbon but also a sink for carbon sequestration. Cultivation and tillage can reduce soil SOC content and lead to soil deterioration. Tillage practices have a major effect on distribution of C and N, and the rates of organic matter decomposition and N mineralization. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Adequate application of fertilizers combined with farmyard manure could increase soil nutrients, and SOC content. Manure or crop residue alone may not be adequate to maintain SOC levels. Crop types influence SOC and soil function in continuous monoculture systems. SOC can be best preserved by rotation with reduced tillage frequency and with additions of chemical fertilizers and manure. Knowledge and assessment of changes (positive or negative) in SOC status with time is still needed to evaluate the impact of different management practices.


1999 ◽  
Vol 79 (3) ◽  
pp. 473-480 ◽  
Author(s):  
S. D. Wanniarachchi ◽  
R. P. Voroney ◽  
T. J. Vyn ◽  
R. P. Beyaert ◽  
A. F. MacKenzie

Agricultural management practices affect the dynamics of soil organic matter (SOM) by influencing the amount of plant residues returned to the soil and rate of residue and SOM decomposition. Total organic C and δ13C of soil were measured in two field experiments involving corn cropping to determine the effect of tillage practices on SOM dynamics. Minimum tillage (MT) and no tillage (NT) had no significant impact on the soil C compared with conventional tillage (CT) in the 0- to 50-cm soil depth sampled at both sites. Continuous corn under MT and CT for 29 yr in a silt loam soil sequestered 61–65 g m−2 yr−1 of corn-derived C (C4-C), and it accounted for 25–26% of the total C in the 0- to 50-cm depth. In a sandy loam soil cropped to corn for 6 yr, SOM contained 10 and 8.4% C4-C under CT and NT, respectively. Reduced tillage practices altered the distribution of C4-C in soil, causing the surface (0–5 cm) soil of reduced tillage (MT and NT) plots to have higher amounts of C4-C compared to CT. Tillage practices did not affect the turnover of C3-C in soil. Key words: Soil organic matter, 13C natural abundance, tillage practices


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Valerie Vranova ◽  
Klement Rejsek ◽  
Pavel Formanek

Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.


2021 ◽  
Vol 209 ◽  
pp. 104960
Author(s):  
Meiling Man ◽  
Claudia Wagner-Riddle ◽  
Kari E. Dunfield ◽  
Bill Deen ◽  
Myrna J. Simpson

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


Perspektif ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Djajadi Djajadi

<p class="Default">ABSTRACT</p><p class="Default">Organik matter has an important role in determining soil health of sugarcane, i.e. soil capacity to support sugarcane to produce sustainable high yield. Soil organic matter influences soil physical, chemical, and biological properties, so that a consequence of declining soil organic matter is poorer soil fertility and lower yield. This paper has an objective to elucidate the important role of organic matter on sustainable farming of sugarcane. The important role of organic matter in soil fertility has been known for a long time before Green Revolution concept was introduced. With more intensity in sugarcane farming and more increasing of sugar demand, application of organic fertilizer started to be substituted by chemical fertilizer. Using green manure and/or biofertilizer has a chance to be spread out to the farmers due to more practical and more efficient than solid organik fertilizer, such as dung manure or compost. Future research should be focusing on the efectivity of green manure and or biofertilzer sources in improving soil fertility and cane yield, minimizing soil pathogen, reducing soil erosion of sugar cane land monoculture, and improving awareness of farmers about soil degradation as consequences of sugarcane monoculture planting for years.</p><p class="Default">Keywords: Organic matter, sugarcane, soil health sustainable farming</p><p class="Default"> </p><p class="Default"><strong>Bahan Organik: Peranannya dalam Budidaya Tebu Berkelanjutan</strong></p><p class="Default">ABSTRAK</p><p class="Default">Bahan organik tanah berperan penting dalam menentukan kesehatan tanah tebu, yaitu kapasitas tanah yang dapat mendukung produksi tebu yang tinggi secara berkelanjutan. Kadar bahan organik tanah mempengaruhi sifat fisik, kimia dan biologi tanah. Paper ini bertujuan untuk menguraikan tentang peranan bahan organik dalam memperbaiki sifat fisik, kimia dan biologi tanah pertanaman tebu. Pentingnya peran bahan oganik tersebut sudah disadari dari dulu, sehingga sebelum revolusi hijau penggunaan pupuk organik sudah umum dilakukan petani. Dengan semakin intensifnya budidaya tebu dan semakin meningkatnya kebutuhan gula, pemanfaatan pupuk organik sudah jarang dilakukan. Diperlukan usaha untuk meningkatkan dan mempertahankan kadar bahan organik pada lahan tebu, antara lain berupa gerakan masal dalam bentuk gerakan nasional melalui program aplikasi bahan organik. Pemanfaatan pupuk hijau dan/atau pupuk hayati berpeluang untuk diterapkan karena lebih praktis dan efisien daripada penambahan pupuk organik padat. Penelitian ke depan perlu difokuskan untuk mengkaji jenis-jenis pupuk organik dan pupuk hayati yang efektif memperbaiki kesuburan, dalam menekan serangan penyakit, meminimalkan erosi pada lahan-lahan tebu monokultur, dan meningkatkan kesadaran petani tebu tentang terjadinya degradasi lahan akibat penanaman tebu yang terus menerus.</p><p class="Default">Kata kunci: Bahan organik, tebu, kesehatan tanah, budidaya berkelanjutan</p><p class="Default"> </p>


2016 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Vladimír Šimanský ◽  
Nora Polláková

Abstract Since understanding soil organic matter (SOM) content and quality is very important, in the present study we evaluated parameters of SOM including: carbon lability (LC), lability index (LI), carbon pool index (CPI) and carbon management index (CMI) in the soil as well as in the water-stable aggregates (WSA) under different soil management practices in a commercial vineyard (established on Rendzic Leptosol in the Nitra viticulture area, Slovakia). Soil samples were taken in spring during the years 2008–2015 from the following treatments: G (grass, control), T (tillage and intensive cultivation), T+FYM (tillage + farmyard manure), G+NPK3 (grass + 3rd intensity of fertilisation for vineyards), and G+NPK1 (grass + 1st intensity of fertilisation for vineyards). The highest LI values in soil were found for the G+NPK3 and T+FYM fertilised treatments and the lowest for the unfertilised intensively tilled treatments. The CPI in the soil increased as follows: T < G+NPK3 < T+FYM < G+NPK1. The highest accumulation of carbon as well as decomposable organic matter occurred in G+NPK1 compared to other fertilised treatments, while intensive tillage caused a decrease. On average, the values of LI in WSA increased in the sequence G+NPK1 < T+FYM < G+NPK3 < T. Our results showed that the greatest SOM vulnerability to degradation was observed in the WSA under T treatment, and the greatest values of CPI in WSA were detected as a result of fertiliser application in 3rd intensity for vineyards and farmyard manure application.


Sign in / Sign up

Export Citation Format

Share Document