scholarly journals Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Valerie Vranova ◽  
Klement Rejsek ◽  
Pavel Formanek

Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

2011 ◽  
Vol 52 (No. 12) ◽  
pp. 531-543 ◽  
Author(s):  
X. Liu ◽  
S.J. Herbert ◽  
A.M. Hashemi ◽  
X. Zhang ◽  
G. Ding

Soil organic carbon (SOC) is the most often reported attribute and is chosen as the most important indicator of soil quality and agricultural sustainability. In this review, we summarized how cultivation, crop rotation, residue and tillage management, fertilization and monoculture affect soil quality, soil organic matter (SOM) and carbon transformation. The results confirm that SOM is not only a source of carbon but also a sink for carbon sequestration. Cultivation and tillage can reduce soil SOC content and lead to soil deterioration. Tillage practices have a major effect on distribution of C and N, and the rates of organic matter decomposition and N mineralization. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Adequate application of fertilizers combined with farmyard manure could increase soil nutrients, and SOC content. Manure or crop residue alone may not be adequate to maintain SOC levels. Crop types influence SOC and soil function in continuous monoculture systems. SOC can be best preserved by rotation with reduced tillage frequency and with additions of chemical fertilizers and manure. Knowledge and assessment of changes (positive or negative) in SOC status with time is still needed to evaluate the impact of different management practices.


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 543 ◽  
Author(s):  
Lothar Beyer ◽  
Daniel M. White ◽  
Manfred Bölter

During recent soil geographical expeditions to Casey Station (Coastal Antarctica), soils with the morphological features of Gelic Podzols (WRB: Spodic Haplic Cryosols) were found to be widespread. The purpose of this paper is to provide further information on these unique soils with respect to soil organic matter (SOM), microbiology, and soil formation. Antarctic Podzols develop on solid rock, outwash sediments, and abandoned penguin rookeries. A comparison of different SOM depth profiles, however, revealed carbon (C) and nitrogen (N) of unknown origin. The SOM composition was characterised by a mean C/N ratio of 10, with a high content of carboxyl-C units, probably derived from amino acids, organic acids, and oxidised carbohydrates. Pyrolysis-GC/MS and NMR showed a notable variation between SOM in depth profiles and the horizons within each profile. Microbial colonisation was affected by the surface vegetation, content of organic C, and the influence of seabirds. Correlations between selected SOM compounds and bacteria on the vegetated soils suggested that algal and moss C influence SOM to a great extent. Most of the long-chain C moieties in the antarctic Podzols appeared to contain multiple oxygen- and N-containing functional groups, cyclic ionised and heterocyclic structures, and alkylations. Data suggest that, along with the podzolisation process, organic acids, non-humified carbohydrates, and N-containing moieties migrated from the topsoil into the spodic horizons. The results are discussed with respect to (i) soil formation and (ii) microbial colonisation in the cold climate. The Gelic Podzols hold huge amounts of C and N but their origin is poorly understood. Explaining the origin of the SOM should be a focus for future research in antarctic soil biogeochemistry.


Author(s):  
Yuki Audette ◽  
Katelyn A. Congreves ◽  
Kimberley Schneider ◽  
Geovanna C. Zaro ◽  
Amanda L. P. Nunes ◽  
...  

AbstractTo improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management—and should be a focus of future research.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kendall A. Johnson ◽  
Clive H. Bock ◽  
Phillip M. Brannen

Abstract Background Phony peach disease (PPD) is caused by the plant pathogenic bacterium Xylella fastidiosa subsp. multiplex (Xfm). Historically, the disease has caused severe yield loss in Georgia and elsewhere in the southeastern United States, with millions of PPD trees being removed from peach orchards over the last century. The disease remains a production constraint, and management options are few. Limited research has been conducted on PPD since the 1980s, but the advent of new technologies offers the opportunity for new, foundational research to form a basis for informed management of PPD in the U.S. Furthermore, considering the global threat of Xylella to many plant species, preventing import of Xfm to other regions, particularly where peach is grown, should be considered an important phytosanitary endeavor. Main topics We review PPD, its history and impact on peach production, and the eradication efforts that were conducted for 42 years. Additionally, we review the current knowledge of the pathogen, Xfm, and how that knowledge relates to our understanding of the peach—Xylella pathosystem, including the epidemiology of the disease and consideration of the vectors. Methods used to detect the pathogen in peach are discussed, and ramifications of detection in relation to management and control of PPD are considered. Control options for PPD are limited. Our current knowledge of the pathogen diversity and disease epidemiology are described, and based on this, some potential areas for future research are also considered. Conclusion There is a lack of recent foundational research on PPD and the associated strain of Xfm. More research is needed to reduce the impact of this pathogen on peach production in the southeastern U.S., and, should it spread internationally, wherever peaches are grown.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maja Dorota Wojciechowska

Purpose The purpose of the paper is to present the latest scholarly trends in the field of social capital in libraries, to review research concepts published by LIS professionals and to suggest further research possibilities in this area. Design/methodology/approach This paper presents a review and critical analysis of literature associated with research on social capital in libraries to highlight its importance for the development of LIS and its impact on the functioning of environments linked with various types of libraries. The goal of literature analysis was to determine the current condition of research on social capital in libraries. The main trends were identified and the need for further qualitative analyses, which are missing at the moment, was confirmed. Findings It was determined that, so far, LIS professionals have focussed mainly on the role of municipal libraries in developing social capital, the problem of building trust, especially in immigrant circles and the impact of libraries on promoting a civil society. Academic libraries, rural libraries, organisational capital in libraries and individual social capital of librarians were a much less frequent subject of research. The role of libraries in developing social capital in educational (primary and secondary education) and professional (non-university professionals) circles is practically non-existent in research, and it will require in-depth studies and analyses in the coming years. Originality/value This paper constitutes a synthetic review of the latest research concepts concerning social capital in libraries. It identifies the most important research trends and areas that so far have not been explored and suggests research methods to help LIS professionals design future research in this area more effectively.


Author(s):  
Mary E. Lewis

This chapter explores our current knowledge of pathology and trauma in Romano-British non-adult samples focusing on the children from the late Roman cemetery of Poundbury Camp, Dorset. Evidence for metabolic diseases (rickets, scurvy, iron deficiency anaemia), fractures, thalassemia, congenital disorders and tuberculosis, are presented with emphasis on what their presence tells us about the impact of the Romans in Britain. Many of the large Roman sites from the UK were excavated long before diagnostic criteria for recognizing pathology in child remains were fully developed, and European studies tend only to focus on anaemia and its link to malaria. A lack of environmental evidence for the sites from which our skeletal remains are derived is also problematic, and this chapter hopes to set the agenda for future research into the health and life of children living in the Roman World.


Reproduction ◽  
2021 ◽  
Vol 161 (1) ◽  
pp. F1-F17
Author(s):  
Rocío Martínez-Aguilar ◽  
Lucy E Kershaw ◽  
Jane J Reavey ◽  
Hilary O D Critchley ◽  
Jacqueline A Maybin

The endometrium is a multicellular tissue that is exquisitely responsive to the ovarian hormones. The local mechanisms of endometrial regulation to ensure optimal function are less well characterised. Transient physiological hypoxia has been proposed as a critical regulator of endometrial function. Herein, we review the literature on hypoxia in the non-pregnant endometrium. We discuss the pros and cons of animal models, human laboratory studies and novel in vivo imaging for the study of endometrial hypoxia. These research tools provide mounting evidence of a transient hypoxic episode in the menstrual endometrium and suggest that endometrial hypoxia may be present at the time of implantation. This local hypoxia may modify the inflammatory environment, influence vascular remodelling and modulate endometrial proliferation to optimise endometrial function. Finally, we review current knowledge of the impact of this hypoxia on endometrial pathologies, with a focus on abnormal uterine bleeding. Throughout the manuscript areas for future research are highlighted with the aim of concentrating research efforts to maximise future benefits for women and society.


2020 ◽  
Vol 23 (3) ◽  
pp. 117-124
Author(s):  
Dušan Šrank ◽  
Vladimír Šimanský

The effort to achieve the sustainable farming system in arable soil led to the intensive search for a new solution but an inspiration can also be found in the application of traditional methods of soil fertility improvement as it is shown in numerous examples in history. Recently many scientific teams have focused their attention on the evaluation of biochar effects on soil properties and crop yields. Since there are a lot of knowledge gaps, especially in explanations how biochar can affect soil organic matter (SOM) and humus substances, we aimed this study at the solution of these questions. Therefore, the objective of the experiment was to evaluate the impact of two biochar substrates (B1 – biochar blended with sheep manure, and B2 – biochar blended with sheep manure and the residue from the biogas station) at two rates (10 and 20 t ha-1) applied alone or in combination with mineral fertilizers (Urea was applied in 2018, at rate 100 kg ha-1, and Urea at rate 100 kg ha-1 + AMOFOS NP 12-52 at 100 kg ha-1 were applied in 2019) on the quantity and quality of SOM and humus of sandy soil (Arenosol, Dolná Streda, Slovakia). The results showed that application of the biochar substrates together with mineral fertilizers (MF) had more pronounced effect on the organic matter mineralization in the sandy soil which resulted in low accumulation of soil organic carbon (Corg) and labile carbon compared to biochar substrates treatments without MF. The share of humic substances in Corg significantly decreased by 16, 50, 16 and 24% in B1 at 10 t ha-1, B1 at 20 t ha-1, B2 at 10 t ha-1 and B2 at 20 t ha-1 treatments, respectively, compared to the control. A similar tendency was observed for biochar substrates treatments + MF, compared to MF control. The carbon content of humic substances (CHS) was equal to 4.40 – 5.80 g kg-1 and the biochar substrates had statistically significant influence on CHS content. On average, there was a smaller decrease of CHS in B1 at rate 10 t ha-1 than at rate 20 t ha-1 and no effect of B2 compared to control. The carbon content of fulvic acid (CFA) was 9% higher in B1 at 10 t ha-1, and 20 t ha-1, 47% higher in B2 at 10 t ha-1 and 17% higher in B2 at 20 t ha-1 compared to control. As a result of biochar substrates + MF application, the reduction in CFA was observed. The results showed a decrease of CHA : CFA ratio with association to biochar substrates alone application compared to control on one hand, and a wider of CHA : CFA ratio in biochar substrates + MF treatments in comparison to MF control on the other hand. Humus stability was increased in biochar substrates alone treatments compared to control, on the other hand, compared to MF control, the application of biochar substrates + MF resulted in a lower humus stability.


Sign in / Sign up

Export Citation Format

Share Document