Impact of the chemical composition of applied organic materials on bacterial and archaeal community compositions in paddy soil

Author(s):  
Sharmin Akter Chowdhury ◽  
Aya Kaneko ◽  
Md Zakaria Ibne Baki ◽  
Chikako Takasugi ◽  
Natsumi Wada ◽  
...  
2011 ◽  
Vol 19 (3) ◽  
pp. 369-376
Author(s):  
Gu Yunfu ◽  
Zhang Xiaoping ◽  
Tu Shihua ◽  
Lindström Kristina

Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
A Golchin ◽  
P Clarke ◽  
JM Oades ◽  
JO Skjemstad

Soil samples were obtained from the surface horizons of five untilled sites and adjacent sites under short- and long-term cultivation. The soil samples were fractionated based on density and organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in cultivated and uncultivated sites by solid-state C-13 CP/MAS NMR spectroscopy. Changes in the nature of organic carbon with cultivation were different in different soils and resulted from variations in the chemistry of carbon inputs to the soils and a greater extent of decomposition of organic materials in cultivated soils. Differences in the chemical composition of organic carbon between cultivated and uncultivated soils resided mostly in organic materials occluded within aggregates, whereas the chemistry of organic matter associated with clay particles showed only small changes. The results indicate a faster decomposition of O-alkyl C in the cultivated soils. Wet aggregate stability, mechanically dispersible clay and modulus of rupture tests were used to assess the effects of cultivation on structural stability of soils. In four of five soils, the virgin sites and sites which had been under long-term pasture had a greater aggregate stability than the cultivated sites. Neither total organic matter nor total O-alkyl C content was closely correlated with aggregate stability, suggesting that only a part of soil carbon or carbohydrate is involved in aggregate stability. The fractions of carbon and O-alkyl C present in the form of particulate organic matter occluded within aggregates were better correlated with aggregate stability (r = 0.86** and 0.88**, respectively). Cultivation was not the dominant factor influencing water-dispersible clay across the range of soil types used in this study. The amount of dispersible clay was a function of total clay content and the percentage of clay dispersed was controlled by factors such as clay mineralogy, CaCO3 and organic matter content of soils. The tendency of different soils for hard-setting and crusting, as a result of structural collapse, was reflected in the modulus of rupture (MOR). The cultivated sites had significantly higher MOR than their non-tilled counterparts. The soils studied had different MOR due to differences in their physical and chemical properties.


Geoderma ◽  
2013 ◽  
Vol 195-196 ◽  
pp. 243-250 ◽  
Author(s):  
Ling Guan ◽  
Naoki Harada ◽  
Yasushi Ono ◽  
Takuya Takahashi ◽  
Kunihiko Fujii ◽  
...  

2011 ◽  
Vol 92 (5) ◽  
pp. 1031-1037 ◽  
Author(s):  
Jinshui Wu ◽  
Ping Zhou ◽  
Ling Li ◽  
Yirong Su ◽  
Hongzhao Yuan ◽  
...  
Keyword(s):  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4267 ◽  
Author(s):  
Jianchao Zhang ◽  
Xingxuan Xia ◽  
Siliang Li ◽  
Wei Ran

Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4) is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM) observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH) images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4) had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.


Soil Research ◽  
1997 ◽  
Vol 35 (5) ◽  
pp. 1061 ◽  
Author(s):  
J. A. Baldock ◽  
J. M. Oades ◽  
P. N. Nelson ◽  
T. M. Skene ◽  
A. Golchin ◽  
...  

Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy has become an important tool for examining the chemical structure of natural organic materials and the chemical changes associated with decomposition. In this paper, solid-state 13C NMR data pertaining to changes in the chemical composition of a diverse range of natural organic materials, including wood, peat, composts, forest litter layers, and organic materials in surface layers of mineral soils, were reviewed with the objective of deriving an index of the extent of decomposition of such organic materials based on changes in chemical composition. Chemical changes associated with the decomposition of wood varied considerably and were dependent on a strong interaction between the species of wood examined and the species composition of the microbial decomposer community, making the derivation of a single general index applicable to wood decomposition unlikely. For the remaining forms of natural organic residues, decomposition was almost always associated with an increased content of alkyl C and a decreased content of O-alkyl C. The concomitant increase and decrease in alkyl and O-alkyl C contents, respectively, suggested that the ratio of alkyl to O-alkyl carbon (A/O-A ratio) may provide a sensitive index of the extent of decomposition. Contrary to the traditional view that humic substances with an aromatic core accumulate as decomposition proceeds, changes in the aromatic region were variable and suggested a relationship with the activity of lignin-degrading fungi. The A/O-A ratio did appear to provide a sensitive index of extent of decomposition provided that its use was restricted to situations where the organic materials were derived from a common starting material. In addition, the potential for adsorption of highly decomposable materials on mineral soil surfaces and the impacts which such an adsorption may have on bioavailability required consideration when the A/O-A ratio was used to assess the extent of decomposition of organic materials found in mineral soils.


1993 ◽  
Vol 39 (4) ◽  
pp. 713-724 ◽  
Author(s):  
Makoto Kimura ◽  
Tomomi Minoda ◽  
Jun Murase

Sign in / Sign up

Export Citation Format

Share Document