Variations in Amplitudes and Wave Energy along the Energy Dispersion Paths for Rossby Waves in the Quasigeostrophic Barotropic Model

Author(s):  
Yaokun Li ◽  
Jiping Chao ◽  
Yanyan Kang
2013 ◽  
Vol 28 (4) ◽  
pp. 1038-1056 ◽  
Author(s):  
Yamei Xu ◽  
Tim Li ◽  
Melinda Peng

Abstract The Year of Tropical Convection (YOTC) high-resolution global reanalysis dataset was analyzed to reveal precursor synoptic-scale disturbances related to tropical cyclone (TC) genesis in the western North Pacific (WNP) during the 2008–09 typhoon seasons. A time filtering is applied to the data to isolate synoptic (3–10 day), quasi-biweekly (10–20 day), and intraseasonal (20–90 day) time-scale components. The results show that four types of precursor synoptic disturbances associated with TC genesis can be identified in the YOTC data. They are 1) Rossby wave trains associated with preexisting TC energy dispersion (TCED) (24%), 2) synoptic wave trains (SWTs) unrelated to TCED (32%), 3) easterly waves (EWs) (16%), and 4) a combination of either TCED-EW or SWT-EW (24%). The percentage of identifiable genesis events is higher than has been found in previous analyses. Most of the genesis events occurred when atmospheric quasi-biweekly and intraseasonal oscillations are in an active phase, suggesting a large-scale control of low-frequency oscillations on TC formation in the WNP. For genesis events associated with SWT and EW, maximum vorticity was confined in the lower troposphere. During the formation of Jangmi (2008), maximum Rossby wave energy dispersion appeared in the middle troposphere. This differs from other TCED cases in which energy dispersion is strongest at low level. As a result, the midlevel vortex from Rossby wave energy dispersion grew faster during the initial development stage of Jangmi.


2006 ◽  
Vol 63 (5) ◽  
pp. 1377-1389 ◽  
Author(s):  
Tim Li ◽  
Bing Fu

Abstract The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data. Among 34 cyclogenesis cases analyzed in the western North Pacific during 2000–01 typhoon seasons, six cases are associated with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest–southeast direction, with alternating cyclonic and anticyclonic vorticity circulation. A typical wavelength of the wave train is about 2500 km. The TC genesis is observed in the cyclonic circulation region of the wave train, possibly through a scale contraction process. The satellite data analyses reveal that not all TCs have a Rossby wave train in their wakes. The occurrence of the Rossby wave train depends to a certain extent on the TC intensity and the background flow. Whether or not a Rossby wave train can finally lead to cyclogenesis depends on large-scale dynamic and thermodynamic conditions related to both the change of the seasonal mean state and the phase of the tropical intraseasonal oscillation. Stronger low-level convergence and cyclonic vorticity, weaker vertical shear, and greater midtropospheric moisture are among the favorable large-scale conditions. The rebuilding process of a conditional unstable stratification is important in regulating the frequency of TC genesis.


2010 ◽  
Vol 138 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Xuyang Ge ◽  
Tim Li ◽  
Melinda S. Peng

Abstract The genesis of Typhoon Prapiroon (2000), in the western North Pacific, is simulated to understand the role of Rossby wave energy dispersion of a preexisting tropical cyclone (TC) in the subsequent genesis event. Two experiments are conducted. In the control experiment (CTL), the authors retain both the previous typhoon, Typhoon Bilis, and its wave train in the initial condition. In the sensitivity experiment (EXP), the circulation of Typhoon Bilis was removed based on a spatial filtering technique of Kurihara et al., while the wave train in the wake is kept. The comparison between these two numerical simulations demonstrates that the preexisting TC impacts the subsequent TC genesis through both a direct and an indirect process. The direct process is through the conventional barotropic Rossby wave energy dispersion, which enhances the low-level wave train, the boundary layer convergence, and the convection–circulation feedback. The indirect process is through the upper-level outflow jet. The asymmetric outflow jet induces a secondary circulation with a strong divergence tendency to the left-exit side of the outflow jet. The upper-level divergence boosts large-scale ascending motion and promotes favorable environmental conditions for a TC-scale vortex development. In addition, the outflow jet induces a well-organized cyclonic eddy angular momentum flux, which acts as a momentum forcing that enhances the upper-level outflow and low-level inflow and favors the growth of the new TC.


Author(s):  
Volkmar Wirth ◽  
Christopher Polster

AbstractThe waveguidability of an upper tropospheric zonal jet quantifies its propensity to duct Rossby waves in the zonal direction. This property has played a central role in previous attempts to explain large wave amplitudes and the subsequent occurrence of extreme weather. In these studies, waveguidability was diagnosed with the help of ray tracing arguments using the zonal average of the observed flow as the relevant background state. Here, it is argued that this method is problematic both conceptually and mathematically. The issue is investigated in the framework of the non-divergent barotropic model. This model allows the straightforward computation of an alternative “zonalized” background state, which is obtained through conservative symmetrization of potential vorticity contours and which is argued to be superior to the zonal average. Using an idealized prototypical flow configuration with large-amplitude eddies, it is shown that the two different choices for the background state yield very different results; in particular, the zonal-mean background state diagnoses a zonal waveguide, while the zonalized background state does not. This result suggests that the existence of a waveguide in the zonal mean background state is a consequence of, rather than a precondition for large wave amplitudes, and it would mean that the direction of causality is opposite to the usual argument. The analysis is applied to two heatwave episodes from summer 2003 and 2010, yielding essentially the same result. It is concluded that previous arguments about the role of waveguidability for extreme weather need to be carefully re-evaluated to prevent misinterpretation in the future.


2021 ◽  
Author(s):  
Volkmar Wirth ◽  
Christopher Polster

<p>The waveguidability of an upper tropospheric zonal jet quantifies its propensity to duct Rossby waves in the zonal direction. This property has played a central role in previous attempts to explain large wave amplitudes and the subsequent occurrence of extreme weather. In these studies, waveguidability was diagnosed with the help of the refractive index using the zonal average of the observed flow as the relevant background state. Here, it is argued that this method is problematic both conceptually and mathematically.</p><p>The issue is investigated in the framework of the non-divergent barotropic model. This model allows the straightforward computation of an alternative "zonalized" background state, which is obtained through conservative symmetrisation of potential vorticity contours and which is argued to be superior to the zonal average. Using an idealized prototypical flow configuration with large-amplitude eddies, it is shown that the two different choices for the background state yield very different results; in particular, the zonal-mean background state diagnoses a zonal waveguide, while the zonalized background state does not. This result suggests that the existence of a waveguide in the zonal mean background state is a consequence of, rather than a precondition for large wave amplitudes, and it would mean that the direction of causality is opposite to the usual argument.</p><p>The analysis is applied to two heatwave episodes from summer 2003 and 2010, yielding essentially the same result. It is concluded that previous arguments about the role of waveguidability for extreme weather need to be carefully re-evaluated to prevent misinterpretation in the future.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Yaokun Li ◽  
Jiping Chao ◽  
Yanyan Kang

A non-divergent barotropic model on a sphere transformed to Mercator coordinates is used to examine the variations in wave energy and amplitude along the energy dispersion paths of barotropic Rossby waves in non-uniform basic flows. Wave energy can be easily solved by specifying the divergence of the group velocity along the corresponding rays. In an analytical non-uniform basic flow that represents the basic features of the observed one at middle latitudes, waves with different periods decay accompanying the decreases in wave energy and amplitude and the increase in the total wavenumber. This implies that the waves are trapped and the energy is eventually absorbed by the basic flow. For the observed non-uniform basic flow that can represent the basic features of the non-divergent wind field at 200 hPa, the situation is more complicated. The significant increase in wave energy can be caused by either the convergence of wave energy or the barotropic energy absorption from the basic flow or both of them. A significant increase in amplitude can also be observed if the total wavenumber varies moderately. This means waves can significantly develop. Waves may decay if both wave energy and amplitude decrease. Waves may propagate without significant developing or decaying to realize a long distance propagation. The propagating waves are mainly caused by oscillating wave energy as well as amplitude.


Sign in / Sign up

Export Citation Format

Share Document