GCM sensitivity experiments with locally modified land surface properties over tropical South America

2006 ◽  
Vol 26 (7-8) ◽  
pp. 729-749 ◽  
Author(s):  
Čedo Branković ◽  
Franco Molteni ◽  
Pedro Viterbo
2020 ◽  
Author(s):  
Lina M. Estupinan-Suarez ◽  
Alexander Brenning ◽  
Fabian Gans ◽  
Guido Kraemer ◽  
Carlos A. Sierra ◽  
...  

<p>The response of tropical vegetation to El Niño Southern Oscillation (ENSO) is considered a main driver of global annual atmospheric CO2 concentrations at inter-annual time scales. ENSO warm and cold phases, El Niño and La Niña respectively, cause contrasting climatic conditions along tropical South America. While some regions experience wetter conditions during El Niño, such as  the Pacific coast, others regions such as the Amazon are exposed to warmer and drier climates. Besides this spatial variation, the biospheric response also differs between ENSO type and intensity, overruling of local conditions and ecosystems types. Due to this complexity, there is a lack of understanding on what ecosystems and regions are systematically affected by ENSO and how biospheric variables respond. Here, we analysed the Northern region of tropical South America covering tropical savannas, forests, and mountainous ecosystems in several countries. To do this, we assessed different land surface (e.g. GPP, NDVI,  FPAR, LST) and climate data streams compiled in the regional Earth System Data Lab (ESDL, https://www.earthsystemdatalab.net/) at 1 km and 10 km pixel size from 2001 to 2015. We applied Isomap, a non-linear dimensionality reduction method in the time domain for high dimensional dynamical systems. Our analysis was constrained to the fourth order continental basins and dominant land cover types. Land use change pixels were disregarded. Further, a comparison of ENSO indexes was conducted among basins. We found that isomap components  are able to capture the biosphere variability related to ENSO in basins that have been historically affected such as Magdalena-Cauca valleys and the Caribbean region. Implementation of non-linear methods increases our understanding of ENSO impacts spatially in regions where events intensity and frequency is increasing, and effective ecosystems management is urgent.</p>


2013 ◽  
Vol 6 (4) ◽  
pp. 6741-6774 ◽  
Author(s):  
T. R. Marthews ◽  
C. A. Quesada ◽  
D. R. Galbraith ◽  
Y. Malhi ◽  
C. E. Mullins ◽  
...  

Abstract. Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded datasets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten–Mualem and van Genuchten–Burdine soil hydraulic models, which are widely-used hydraulic sub-models in Land Surface Models. This has been possible through interpolating soil measurements from several sources through the SOTERLAC soil and terrain database and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20 × higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally-parameterised and that are not just based on soil texture. Details are provided specifically on how to assemble the ancillary data files required for grid-based vegetation simulation using the Joint UK Land Environment Simulator (JULES). We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models.


2014 ◽  
Vol 7 (3) ◽  
pp. 711-723 ◽  
Author(s):  
T. R. Marthews ◽  
C. A. Quesada ◽  
D. R. Galbraith ◽  
Y. Malhi ◽  
C. E. Mullins ◽  
...  

Abstract. Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded data sets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten–Mualem and van Genuchten–Burdine soil hydraulic models, which are widely used hydraulic sub-models in land surface models. This has been possible through interpolating soil measurements from several sources through the SOTERLAC soil and terrain data base and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20x higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally parameterised and that are not just based on soil texture. We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1095 ◽  
Author(s):  
Juan Bedoya-Soto ◽  
Germán Poveda ◽  
David Sauchyn

We present a simplified overview of land-atmosphere feedbacks at interannual timescales over tropical South America as structural sets of linkages among surface air temperature (T), specific humidity at 925 hPa (q925), volumetric soil water content (Θ), precipitation (P), and evaporation (E), at monthly scale during 1979–2010. Applying a Maximum Covariance Analysis (MCA), we identify the modes of greatest interannual covariability in the datasets. Time series extracted from the MCAs were used to quantify linear and non-linear metrics at up to six-month lags to establish connections among variables. All sets of metrics were summarized as graphs (Graph Theory) grouped according to their highest ENSO-degree association. The core of ENSO-activated interactions is located in the Amazon River basin and in the Magdalena-Cauca River basin in Colombia. Within the identified multivariate structure, Θ enhances the interannual connectivity since it often exhibits two-way feedbacks with the whole set of variables. That is, Θ is a key variable in defining the spatiotemporal patterns of P and E at interannual time-scales. For both the simultaneous and lagged analysis, T activates non-linear associations with q925 and Θ. Under the ENSO influence, T is a key variable to diagnose the dynamics of interannual feedbacks of the lower troposphere and soil interfaces over tropical South America. ENSO increases the interannual connectivity and memory of the feedback mechanisms.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


Sign in / Sign up

Export Citation Format

Share Document