Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models

2012 ◽  
Vol 41 (3-4) ◽  
pp. 1039-1056 ◽  
Author(s):  
Josefina Blázquez ◽  
Mario N. Nuñez
2014 ◽  
Vol 125 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Rosmeri Porfírio da Rocha ◽  
Michelle Simões Reboita ◽  
Lívia Márcia Mosso Dutra ◽  
Marta Pereira Llopart ◽  
Erika Coppola

2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Author(s):  
Silvio Gualdi ◽  
Samuel Somot ◽  
Wilhelm May ◽  
Sergio Castellari ◽  
Michel Déqué ◽  
...  

2020 ◽  
Author(s):  
Rosmeri Porfírio da Rocha ◽  
Michelle Simões Reboita ◽  
Natália Machado Crespo ◽  
Eduardo Marcos de Jesus ◽  
Andressa Andrade Cardoso ◽  
...  

<p>Cyclones developing in eastern coast of South America impact weather and control the climate in most parts of the continent as well as over the South Atlantic Ocean. Current knowledge of these cyclones shows that they can have different thermal and dynamic structures along their lifecycles being classified as tropical, subtropical or extratropical. Cyclones occurring over the sea generate intense near-surface winds with major impacts on human activities and ecosystems. Given this context, we are producing fine resolution (~25 km) dynamic downscaling with RegCM4 to investigate the climatic trends of the different phases of cyclones over the southwest South Atlantic Ocean. Special emphasis will be given on the contribution of subtropical cyclones causing extreme events (rainfall and wind) in eastern Brazil. The simulations cover South America and wider area of South Atlantic Ocean. For evaluation simulation RegCM4 is forced by ERA-Interim reanalysis, while for the projections by CMIP5 models under RCP4.5 and RCP8.5 scenarios. Cyclones are tracked using an algorithm based on cyclonic relative vorticity. In this study we present the climatology of all cyclones provided by the ERA-Interim evaluation simulation in the period 1979-2015. Basically, we discuss the ability of fine resolution simulation in reproducing the main cyclogenetic areas over the continent, seasonality and interannual variability of cyclones. Comparisons with previous simulations allow discussing the impact of fine resolution downscaling on the climatological features of all cyclones and their classification in South America domain.    </p>


Sign in / Sign up

Export Citation Format

Share Document