The interdecadal change of the leading mode of the winter precipitation over China

2016 ◽  
Vol 47 (7-8) ◽  
pp. 2397-2411 ◽  
Author(s):  
Jingwen Ge ◽  
Xiaojing Jia ◽  
Hai Lin
2016 ◽  
Vol 94 (2) ◽  
pp. 197-213 ◽  
Author(s):  
Jae-Won CHOI ◽  
Seung-Wook LEE ◽  
Byung-Hwan LIM ◽  
Baek-Jo KIM

2017 ◽  
Vol 30 (6) ◽  
pp. 1923-1937 ◽  
Author(s):  
Xiaojing Jia ◽  
Jingwen Ge

Abstract The current study investigates the interdecadal changes in the relationship between the winter precipitation anomalies in southeastern China, El Niño–Southern Oscillation (ENSO), and the East Asian winter monsoon (EAWM) at the end of the twentieth century. It appears that the relationships between the interannual variability of the southeastern China winter precipitation and ENSO as well as EAWM are obviously weakened after 1998/99. The possible mechanisms accounting for this interdecadal change in the relationship have been examined by dividing the data into two subperiods [1980–98 (P1) and 1999–2015 (P2)]. The results indicate that, without the linear contribution of EAWM, ENSO only play a limited role in the variability of winter precipitation in southeastern China in both subperiods. In contrast, in P1, corresponding to an ENSO-independent weaker-than-normal EAWM, anomalous southerlies along coastal southeastern China associated with an anticyclone over the northwestern Pacific transport water vapor to China. However, in P2 the impact of EAWM on winter precipitation in southeastern China is weakened because of the regime shift of EAWM. The EAWM-related positive SLP anomalies over the North Pacific move eastward in P2, causing an eastward migration of the associated anomalous southerlies along its western flank and therefore cannot significantly contribute to the positive winter precipitation anomalies in southeastern China.


2020 ◽  
Vol 33 (16) ◽  
pp. 7083-7100
Author(s):  
Yong Liu ◽  
Wen Zhou ◽  
Xia Qu ◽  
Renguang Wu

AbstractThe Silk Road pattern (SRP) is a well-known teleconnection pattern along the upper-level westerly jet over the Eurasian continent during boreal summer. The SRP has experienced an interdecadal change around the late 1970s. The present study identified a new change of the SRP around the late 1990s, which is characterized by significant weakening and zonal phase shift of the major centers of the SRP during the recent decades. The recent reshaping of the SRP is attributed to an enhanced impact of precipitation anomalies over the northeastern Indian summer monsoon (ISM), which is associated with the leading mode change of the ISM precipitation anomalies around the late 1990s. The interdecadal weakening of the upper-level westerly jet over central and East Asia also favors the southward movement of the SRP during recent periods. The differences of the features, climate impact, and causes related to the recent SRP change from those related to the SRP change around the late 1970s are also contrasted in this study.


2016 ◽  
Vol 29 (16) ◽  
pp. 5979-5997 ◽  
Author(s):  
Yuanyuan Guo ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña–like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña–like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.


2002 ◽  
Vol 33 (5) ◽  
pp. 415-424 ◽  
Author(s):  
Cintia B. Uvo ◽  
Ronny Berndtsson

Climate variability and climate change are of great concern to economists and energy producers as well as environmentalists as both affect the precipitation and temperature in many regions of the world. Among those affected by climate variability is the Scandinavian Peninsula. Particularly, its winter precipitation and temperature are affected by the variations of the so-called North Atlantic Oscillation (NAO). The objective of this paper is to analyze the spatial distribution of the influence of NAO over Scandinavia. This analysis is a first step to establishing a predictive model, driven by a climatic indicator such as NAO, for the available water resources of different regions in Scandinavia. Such a tool would be valuable for predicting potential of hydropower production one or more seasons in advance.


2019 ◽  
Vol 132 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Fayyaz Ahmed ◽  
Shahzada Adnan ◽  
Muhammad Latif

2019 ◽  
Vol 55 (4) ◽  
pp. 2708-2721 ◽  
Author(s):  
S. M. Collins ◽  
S. Yuan ◽  
P. N. Tan ◽  
S. K. Oliver ◽  
J. F. Lapierre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document