On the climate model simulation of Indian monsoon low pressure systems and the effect of remote disturbances and systematic biases

2017 ◽  
Vol 50 (11-12) ◽  
pp. 4721-4743 ◽  
Author(s):  
Richard C. Levine ◽  
Gill M. Martin
2017 ◽  
Vol 122 (22) ◽  
pp. 12,140-12,151 ◽  
Author(s):  
Wenhao Dong ◽  
Yanluan Lin ◽  
Jonathon S. Wright ◽  
Yuanyu Xie ◽  
Fanghua Xu ◽  
...  

2020 ◽  
Vol 33 (17) ◽  
pp. 7275-7287 ◽  
Author(s):  
Wenhao Dong ◽  
Yi Ming ◽  
V. Ramaswamy

AbstractMonsoon low pressure systems (MLPSs) are among the most important synoptic-scale disturbances of the South Asian summer monsoon. Potential changes in their characteristics in a warmer climate would have broad societal impacts. Yet, the findings from a few existing studies are inconclusive. We use the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model CM4.0 to examine the projected changes in the simulated MLPS activity under a future emission scenario. It is shown that CM4.0 can skillfully simulate the number, genesis location, intensity, and lifetime of MLPSs. Global warming gives rise to a significant decrease in MLPS activity. An analysis of several large-scale environmental variables, both dynamic and thermodynamic, suggests that the decrease in MLPS activity can be attributed mainly to a reduction in low-level relative vorticity over the core genesis region. The decreased vorticity is consistent with weaker large-scale ascent, which leads to less vorticity production through the stretching term in the vorticity equation. Assuming a fixed radius of influence, the projected reduction in MLPSs would significantly lower the associated precipitation over north-central India, despite an overall increase in mean precipitation.


2000 ◽  
Vol 27 (5) ◽  
pp. 2815-2815
Author(s):  
S. E. Walsh ◽  
S. J. Vavrus ◽  
J. A. Foley ◽  
R. H. Wynne

Sign in / Sign up

Export Citation Format

Share Document