Different prediction skill for the East Asian winter monsoon in the early and late winter season

2019 ◽  
Vol 54 (3-4) ◽  
pp. 1523-1538 ◽  
Author(s):  
Baoqiang Tian ◽  
Ke Fan
Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 300 ◽  
Author(s):  
Sun-Hee Shin ◽  
Ja-Yeon Moon

The prediction skill for the East Asian winter monsoon (EAWM) has been analyzed, using the observations and different climate models that participate in the APEC Climate Center (APCC) multi-model ensemble (MME) seasonal forecast. The authors first examined the characteristics of the existing EAWM indices to find a suitable index for the APCC seasonal forecast system. This examination revealed that the selected index shows reasonable prediction skill of EAWM intensity and well-represents the characteristics of wintertime temperature anomalies associated with the EAWM, especially for the extreme cold winters. Although most models capture the main characteristics of the seasonal mean circulation over East Asia reasonably well, they still suffer from difficulty in predicting the interannual variability (IAV) of the EAWM. Fortunately, the POAMA has reasonable skill in capturing the timing and strength of the EAWM IAV and reproduces the EAWM-related circulation anomalies well. The better performance of the POAMA may be attributed to the better skill in simulating the high-latitude forcing including the Siberian High (SH) and Artic Oscillation (AO) and the strong links of the ENSO to the EAWM, compared to other models.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2011 ◽  
Vol 28 (4) ◽  
pp. 913-926 ◽  
Author(s):  
Gang Zeng ◽  
Wei-Chyung Wang ◽  
Zhaobo Sun ◽  
Zhongxian Li

2013 ◽  
Vol 118 (3) ◽  
pp. 1312-1328 ◽  
Author(s):  
Xingwen Jiang ◽  
Song Yang ◽  
Yueqing Li ◽  
Arun Kumar ◽  
Wanqiu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document