Ocean–atmosphere coupled processes in the tropical Indian Ocean region prior to Indian summer monsoon onset over Kerala

2020 ◽  
Author(s):  
U. N. Athira ◽  
S. Abhilash
2015 ◽  
Vol 28 (13) ◽  
pp. 5063-5076 ◽  
Author(s):  
Shuangwen Sun ◽  
Jian Lan ◽  
Yue Fang ◽  
Tana ◽  
Xiaoqian Gao

Although the Indian Ocean dipole (IOD) and ENSO are significantly correlated, there are indeed some IODs independent of ENSO. In this research, the characteristics of independent IOD are investigated and a new triggering mechanism is proposed based on case study and statistical analysis. Results show that the independent IODs peak in an earlier season and have a weaker intensity compared with the IODs associated with ENSO. The wind anomaly associated with the independent IOD is very unique and shows a monsoonlike pattern, in addition to the equatorial easterly wind anomaly (EEWA) common to all IODs. The evolution of the EEWA associated with the independent IOD is well captured by the second EOF mode of the equatorial zonal wind interannual variability, suggesting that the independent IOD is an important climate mode inherent to the tropical Indian Ocean. The EEWA associated with the independent IOD is tightly linked to Indian summer monsoon activities in spring, and the convection anomalies associated with early summer monsoon onset in the Bay of Bengal plays a key role in inducing the EEWA. The EEWA can persist through spring and summer and causes a series of processes similar to those related to the IODs associated with ENSO. The correlation between the independent IOD and Indian summer monsoon activities increases dramatically after the 1980s, which is probably due to the mean state change in the tropical Indian Ocean climate system.


2014 ◽  
Vol 44 (3-4) ◽  
pp. 977-1002 ◽  
Author(s):  
Chloé Prodhomme ◽  
Pascal Terray ◽  
Sébastien Masson ◽  
Ghyslaine Boschat ◽  
Takeshi Izumo

2016 ◽  
Vol 49 (4) ◽  
pp. 1429-1448 ◽  
Author(s):  
Julien Crétat ◽  
Pascal Terray ◽  
Sébastien Masson ◽  
K. P. Sooraj ◽  
Mathew Koll Roxy

2019 ◽  
Vol 32 (6) ◽  
pp. 1693-1706 ◽  
Author(s):  
Zhen-Qiang Zhou ◽  
Renhe Zhang ◽  
Shang-Ping Xie

Abstract Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.


MAUSAM ◽  
2021 ◽  
Vol 67 (4) ◽  
pp. 803-828
Author(s):  
S. P. GHANEKAR ◽  
S. G. NARKHEDKAR ◽  
D. R. SIKKA

 Summer monsoon onset progress from the oceanic region of Southeast Bay of Bengal / Andaman Sea (Oceanr) up to extreme southwestern part of India (Kerala) for the years 2009 to 2014 is investigated. Synoptic weather information, INSAT/KALPANA-1 as well as cloud imageries archived from Dundee Satellite Receiving Station for May and early June for these years are used in the analysis. Upper-air reanalyzed winds from NCEP/NCAR and OLR data archived through NOAA satellites are also used. During the study period, the dates of monsoon onset as well as the time required for the advancement of onset from Oceanr to Kerala have shown a large variation. An attempt is made to investigate the causes for such variations. The results indicate that intense disturbances which formed over north Indian Ocean in 2009, 2010, 2013 and 2014 and over west-north Pacific Oceanic region in 2011 and 2012 have contributed for the same. Analysis is carried out, limiting its focus to bring out the role of these convective events in the observed variation of onset timing and its progress by taking case to case review of these events and bringing out their influence through synoptic analysis. Utility of this information in prediction of the progress of Indian summer monsoon onset is also brought out.  


2020 ◽  
Vol 141 (1-2) ◽  
pp. 551-566 ◽  
Author(s):  
Amol Vibhute ◽  
Subrota Halder ◽  
Prem Singh ◽  
Anant Parekh ◽  
Jasti S. Chowdary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document