scholarly journals Interannual Variability of Summer Surface Air Temperature over Central India: Implications for Monsoon Onset

2019 ◽  
Vol 32 (6) ◽  
pp. 1693-1706 ◽  
Author(s):  
Zhen-Qiang Zhou ◽  
Renhe Zhang ◽  
Shang-Ping Xie

Abstract Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

2020 ◽  
Author(s):  
Devanil Choudhury ◽  
Debashis Nath ◽  
Wen Chen

<p>We investigated the physical mechanism for late Indian Summer Monsoon onset over Kerala<br>(MOK). 14 early and 9 late onset years are selected based on the criteria when the onset is 5 days or<br>more prior and after normal onset date (i.e 1 st June according to India Meteorological Department)<br>respectively. Then, we perform composite analyses of mean May monthly and daily evolution during<br>early and late onset years to examine the differences in monsoon circulation features prior to the MOK.<br>We find that advection of Surface Air Temperature (SAT) from the northern to the southern China and<br>the eastern Tibetan Plateau (TP) plays an important role to modulate the MOK processes. In the late<br>onset years, more low-level jet (LLJ) from the Bay of Bengal (BOB) divert towards the east Asia before<br>the onset, which is due to an extension of the low sea level pressure and high SAT over the east Asia<br>(eastern TP, east-central China). This strengthens the low-level convergence and upper level divergence<br>over the eastern TP and southern China. As a result, a significant amount of moisture from the BOB<br>is transported towards the eastern TP and southern China. Thereby, a comparatively weaker LLJ and<br>deficit low-level moisture supply over the eastern BOB maintain the key roles in modulating the MOK<br>processes.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 352 ◽  
Author(s):  
M. Islam ◽  
Andy Chan ◽  
Matthew Ashfold ◽  
Chel Ooi ◽  
Majid Azari

The Maritime Continent (MC) is positioned between the Asian and Australian summer monsoons zone. The complex topography and shallow seas around it are major challenges for the climate researchers to model and understand it. It is also the centre of the tropical warm pool of Southeast Asia (SEA) and therefore the MC gets extra attention of the researchers. The monsoon in this area is affected by inter-scale ocean-atmospheric interactions such as the El-Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Madden-Julian Oscillation (MJO). Monsoon rainfall in the MC (especially in Indonesia and Malaysia) profoundly exhibits its variability dependence on ocean-atmospheric phenomena in this region. This monsoon shift often introduces to dreadful events like biomass burning (BB) in Southeast Asia (SEA) in which some led to severe trans-boundary haze pollution events in the past. In this study, the BB episode of 2015 in the MC is highlighted and discussed. Observational satellite datasets are tested by performing simulations with the numerical weather prediction (NWP) model WRF-ARW (Weather Research and Forecast—Advanced research WRF). Observed and model datasets are compared to study the surface air temperature and precipitation (rainfall) anomalies influenced by ENSO, IOD, and MJO. Links amongst these influences have been recognised and the delayed precipitation of the regular monsoon in the MC due to their influence during the 2015 BB episode is explained and accounted for, which eventually led to the intensification of fire and a severe haze.


2013 ◽  
Vol 8 (4) ◽  
pp. 044053 ◽  
Author(s):  
Xin Wang ◽  
Xingwen Jiang ◽  
Song Yang ◽  
Yueqing Li

2021 ◽  
pp. 1-51
Author(s):  
Xiangbai Wu ◽  
Gen Li ◽  
Wenping Jiang ◽  
Shang-Min Long ◽  
Bo Lu

AbstractDuring the summer following El Niño, a basin-wide sea surface temperature (SST) warming takes place over the tropical Indian Ocean (TIO), exerting profound influences on the Asian summer monsoon. This is an important source of seasonal predictability for the Asian summer monsoon. Based on observations, however, the present study finds that the relationship between El Niño-Southern Oscillation (ENSO) and the TIO SST anomalies during the decaying summer is asymmetric with a much weaker relationship between La Niña and the TIO SST anomalies relative to El Niño. The analyses show that this asymmetric relationship can be explained by the asymmetries in initial TIO SST, oceanic Rossby wave in the southern Indian Ocean and ENSO decaying rate. In contrast to El Niño events, La Niña events tend to have a stronger initial TIO warming and a less peak intensity with a weaker oceanic Rossby wave response in the southern Indian Ocean. On the other hand, La Niña events tend to decay more slowly with the persistent SST cooling over the central equatorial Pacific in the following summer. The equatorial Pacific SST cooling would induce an anomalous anticyclone via a Gill-type Rossby wave response, weakening the positive feedback between the anomalous cyclone spanning the tropical Northwest Pacific and North Indian oceans and the TIO summer basin-wide SST cooling. These results have important implications for the climate predictability of the Indian Ocean and Asian summer monsoon.


2018 ◽  
Vol 32 (1) ◽  
pp. 145-160 ◽  
Author(s):  
Yonghong Yao ◽  
Hai Lin ◽  
Qigang Wu

AbstractThe mei-yu onset over the middle to lower reaches of the Yangtze River Valley (MLYRV) varies considerably from early June to mid-July, which leads to large interannual changes in rainy-season length, total summer rainfall, and flooding potential. Previous studies have investigated the impact of El Niño–Southern Oscillation (ENSO) on the mei-yu onset. This study shows that a strong (weak) East Asian and western North Pacific (EAWNP) intraseasonal oscillation (ISO) in spring leads to an early (late) onset of the mei-yu over the MLYRV, and this ISO–mei-yu relationship is attributed to different types of ENSO in the preceding winter. A strong EAWNP ISO in spring is related to an eastern Pacific El Niño (EP El Niño) in the previous winter, and negative sea surface temperature (SST) anomalies in the eastern Indian Ocean and the South China Sea (SCS) in May, which can cause an early onset of the South China Sea summer monsoon that also favors an early mei-yu onset. In contrast, a weak EAWNP ISO in spring is associated with a central Pacific El Niño (CP El Niño) before April, but with an EP El Niño after April, and positive SST anomalies in both the eastern Indian Ocean and the SCS in May. A statistical forecast model combining the intensity of spring EAWNP ISO, CP ENSO, and EP ENSO indices shows a high prediction skill of the observed mei-yu onset date.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


Sign in / Sign up

Export Citation Format

Share Document