Impacts of stratospheric polar vortex changes on wintertime precipitation over the northern hemisphere

2022 ◽  
Author(s):  
Jiankai Zhang ◽  
Huayi Zheng ◽  
Mian Xu ◽  
Qingqing Yin ◽  
Siyi Zhao ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Zhou ◽  
Quanliang Chen ◽  
Fei Xie ◽  
Jianping Li ◽  
Minggang Li ◽  
...  

Abstract Variations in tropical sea surface temperatures (SST) have pronounced impacts on the stratospheric polar vortex, with the role of El Niño being the focus of much research interest. However, the Indo–Pacific warm pool (IPWP), which is the warmest body of seawater in the world, has received less attention. The IPWP has been warming in recent years. This paper presents for the first time the remarkable nonlinearity in Northern Hemisphere (NH) stratospheric circulation and temperature response to IPWP warming (the so-called IPWP Niño) in boreal winter. The magnitude of NH stratospheric vortex weakening is strong and significant in case of moderate IPWP Niño, but is weak and insignificant in strong IPWP Niño case. This phenomenon is robust in both the historical simulations and observations. An idealized model experiments forced with linear varying SST forcing in the IPWP region isolate the nonlinearities arising from IPWP Niño strength. Westward extension of precipitation into the Maritime Continent drives attenuation and westward shift of extratropical waves during strong IPWP Niño events. Linear wave interference analysis reveals this leads to weak interference between the climatological and anomalous stationary waves and thereby a weak response of the stratospheric vortex. These findings imply a distinct stratospheric vortex response to the IPWP Niño, and provide extended implications for the surface climate in the NH.


2020 ◽  
Author(s):  
Nicholas Tyrrell ◽  
Alexey Karpechko ◽  
Sebastian Rast

<p>We investigate the effect of systematic model biases on teleconnections influencing the Northern Hemisphere wintertime circulation. We perform a two-step nudging and bias-correcting scheme for the dynamic variables of the ECHAM6 atmospheric model to reduce errors in the model climatology relative to ERA-Interim. The developed scheme is efficient in removing errors in model’s climatology. In particular, large negative bias in December-February mean zonal stratospheric winds is reduced by up to 75%, significantly increasing the strength of the Northern Hemisphere wintertime stratospheric polar vortex. <!-- I think calling increase in vortex strength ”a result” somewhat shifts the focus. The result is reduced error, not increased strength. I mean technically it is the same, but perception of the result is a bit different. What do you think? -->The bias-corrections are applied to the full atmosphere or stratosphere only.</p><p>We compare the response of bias-corrected and control runs to internal stratospheric variability and surface forcings that are important on seasonal timescales: Siberian snow cover in October; the Quasi-Biennial Oscillation (QBO); and ENSO. We find the bias-corrected model has the potential for a strengthened and more realistic response to the teleconnections, either in the stratospheric or surface response. In particular, the bias-corrected model has a strong QBO teleconnection which modulates the extratropical polar vortex and sea level pressure variability in a manner similar to that seen in observations. The Siberian snow forcing with the stratosphere-only bias-corrections also leads to an enhanced surface response relative to the control.<!-- Given considerable remaining biases in tropospheric waves in the stratosphere-only bias corrected run I would not overemphasize the results in this particular run especially because full bias-corrected run does not show large surface response. But it is Ok to mention this result in the abstract. --> The mechanism behind the sensitivity of the teleconnections to model biases is discussed.</p>


2020 ◽  
Author(s):  
Jessica Oehrlein ◽  
Gabriel Chiodo ◽  
Lorenzo M. Polvani

Abstract. Modeling and observational studies have reported effects of stratospheric ozone extremes on Northern Hemisphere spring climate. Recent work has further suggested that the coupling of ozone chemistry and dynamics amplifies the surface response to midwinter sudden stratospheric warmings (SSWs). Here, we study the importance of interactive ozone chemistry in representing the stratospheric polar vortex and Northern Hemisphere winter surface climate variability. We contrast two simulations from the interactive and specified chemistry (and thus ozone) versions of the Whole Atmosphere Community Climate Model, designed to isolate the impact of interactive ozone on polar vortex variability. In particular, we analyze the response with and without interactive chemistry to midwinter SSWs, March SSWs, and strong polar vortex events (SPVs). With interactive chemistry, the stratospheric polar vortex is stronger, and more SPVs occur, but we find little effect on the frequency of midwinter SSWs. At the surface, interactive chemistry results in a pattern resembling a more negative North Atlantic Oscillation following midwinter SSWs, but with little impact on the surface signatures of late winter SSWs and SPVs. These results suggest that including interactive ozone chemistry is important for representing North Atlantic and European winter climate variability.


2020 ◽  
Vol 20 (17) ◽  
pp. 10531-10544
Author(s):  
Jessica Oehrlein ◽  
Gabriel Chiodo ◽  
Lorenzo M. Polvani

Abstract. Modeling and observational studies have reported effects of stratospheric ozone extremes on Northern Hemisphere spring climate. Recent work has further suggested that the coupling of ozone chemistry and dynamics amplifies the surface response to midwinter sudden stratospheric warmings (SSWs). Here we study the importance of interactive ozone chemistry in representing the stratospheric polar vortex and Northern Hemisphere winter surface climate variability. We contrast two simulations from the interactive and specified chemistry (and thus ozone) versions of the Whole Atmosphere Community Climate Model, which is designed to isolate the impact of interactive ozone on polar vortex variability. In particular, we analyze the response with and without interactive chemistry to midwinter SSWs, March SSWs, and strong polar vortex events (SPVs). With interactive chemistry, the stratospheric polar vortex is stronger and more SPVs occur, but we find little effect on the frequency of midwinter SSWs. At the surface, interactive chemistry results in a pattern resembling a more negative North Atlantic Oscillation following midwinter SSWs but with little impact on the surface signatures of late winter SSWs and SPVs. These results suggest that including interactive ozone chemistry is important for representing North Atlantic and European winter climate variability.


Sign in / Sign up

Export Citation Format

Share Document