scholarly journals A novel method for achieving an optimal classification of the proteinogenic amino acids

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andre Then ◽  
Karel Mácha ◽  
Bashar Ibrahim ◽  
Stefan Schuster

Abstract The classification of proteinogenic amino acids is crucial for understanding their commonalities as well as their differences to provide a hint for why life settled on the usage of precisely those amino acids. It is also crucial for predicting electrostatic, hydrophobic, stacking and other interactions, for assessing conservation in multiple alignments and many other applications. While several methods have been proposed to find “the” optimal classification, they have several shortcomings, such as the lack of efficiency and interpretability or an unnecessarily high number of discriminating features. In this study, we propose a novel method involving a repeated binary separation via a minimum amount of five features (such as hydrophobicity or volume) expressed by numerical values for amino acid characteristics. The features are extracted from the AAindex database. By simple separation at the medians, we successfully derive the five properties volume, electron–ion-interaction potential, hydrophobicity, α-helix propensity, and π-helix propensity. We extend our analysis to separations other than by the median. We further score our combinations based on how natural the separations are.

2006 ◽  
Vol 284 (6) ◽  
pp. 575-585 ◽  
Author(s):  
Ivan M. Okhapkin ◽  
Andrei A. Askadskii ◽  
Vladimir A. Markov ◽  
Elena E. Makhaeva ◽  
Alexei R. Khokhlov

1997 ◽  
Vol 87 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Hui-Fen Zhang ◽  
Leonard J. Francl ◽  
James G. Jordahl ◽  
Steven W. Meinhardt

Cultivar-specific toxic metabolites of Pyrenophora tritici-repentis are involved in the appearance of necrotic and chlorotic foliar lesions characteristic of tan spot. A P. tritici-repentis necrosis-inducing toxin, Ptr necrosis toxin, was purified from isolate 86-124, sequenced by gas-phase amino acid microsequencing, and characterized by circular dichroism (CD) spectroscopy and isoelectric focusing. The purified protein had a similar amino acid composition and molecular weight as previously reported. Analysis of the CD spectrum from 178 to 250 nm indicated a protein consisting of 13% α-helix, 36% antiparallel β-sheet, 25% turns, and 25% other structures. The Ptr necrosis toxin from isolate 86-124 has an isoelectric point near pH 10. Using overlapping proteolytic fragments obtained from the toxin, a sequence of 101 continuous amino acids was obtained, but the amino terminus was blocked and 9 to 16 amino acids could not be sequenced. Secondary structure prediction based on the amino acid sequence indicated a β-sheet protein with little α-helix, which is in agreement with the structure determined by CD spectroscopy. Sequence analysis indicated the presence of a possible membrane adhesion site and several possible phosphorylation sites that may be involved in phytotoxicity.


1991 ◽  
Vol 20 (7) ◽  
pp. 1279-1282 ◽  
Author(s):  
Masataka Fukugita ◽  
Takashi Nakazawa ◽  
Hikaru Kawai ◽  
Yuko Okamoto

2021 ◽  
Vol 41 ◽  
pp. 06003
Author(s):  
Lu’lu’ Sahara Wusahaningtyas ◽  
Moh Mirza Nuryady ◽  
Lintang Winantya Firdausy ◽  
Ahmad Fahrurrozi Zs ◽  
R. Wisnu Nurcahyo

This study aims to determine the profile of the ABC2 encoding transporter on Trypanosoma evansi (T. evansi) Ngawi isolates, Indonesia, exposed with Isometamidium Chloride (ISM). This study used blood samples of mice containing Trypanosoma evansi that had been exposed with ISM 0.05 mg/kg BW, ISM 0.1 mg/kg BW and ISM 0.3 mg/kg BW for 4 weeks, and control group. Blood samples were extracted and amplified using primers. ABC2 F 5 ’GCTTGTCCGACCATCTTGCA 3’ and ABC2 R 5 ’AGGTCCACTCCCATGCTACA 3’ that produced 350 basepairs (bp). The sequencing results were then analyzed using BLAST and MEGA 7.0. There was 1 deference nucleotide (107) derived from multiple alignments, while in amino acids there was no difference in all samples. Trypanosoma evansi which was exposed with ISM does not have many differences in nucleotide or amino acid and only one type of mutation. The ABC2 Transporters of four groups of T.evansi have high similarity to ABC Transporters of T. brucei gambiense, T. brucei brucei, and T. brucei brucei (Tbabc2). Therefore, further research on the ABC2 Transporter gene is needed.


2021 ◽  
Author(s):  
◽  
Jonas Watzel

Non-ribosomal peptide synthetases (NRPSs) are known for their capability to produce a wide range of natural compounds and some of them possess interesting bioactivities relevant for clinical application like antibiotics, anticancer, and immunosuppressive drugs. The diverse bioactivity of non-ribosomal peptides (NRPs) originates from their structural diversity, which results not only from the incorporation of non-proteinogenic amino acids into the growing peptide chain, but also the formation of heterocycles or further peptide modifications like methylation, hydroxylation and acetylation. The biosynthesis of NRPs is achieved via the orchestrated interplay of distinct catalytic domains, which are grouped to modules that are located on one or more polypeptide chains. Each cycle starts with the selection and activation of a specific amino acid by the adenylation (A) domain, which catalyzes the aminoacyl adenylate formation under ATP consumption. This activated amino acid is then bound via a thioester bond to the 4’-phosphopantetheine cofactor (PPant-arm) of the following thiolation (T) domain. Before substrate loading, the PPant-arm is post-translationally added to the T domain by a phosphopantetheinyl transferase (PPTase), which converts the inactive apo-T domain in its active holo-form. In the last step of the catalytic cycle, two T domain bound peptide building blocks are connected by the condensation (C) domain, resulting in peptide bond formation and transfer of the nascent peptide chain to the following module. Each catalytic cycle is performed by a C-A-T elongation module until the termination module with a C-terminal thioesterase (TE) domain is reached. Here, the peptide product is released by hydrolysis or intramolecular cyclisation. In comparison to single-protein NRPSs, where all modules are encoded on a single polypeptide chain, multi-protein NRPS systems must also maintain a specific module order during the peptide biosynthesis. Therefore, small C-terminal and N-terminal communication-mediating (COM) domains/docking domains (DD) were identified in the C- and N-terminal regions of multi-protein NRPSs. It was shown that these domains mediate specific and selective non-covalent protein-protein interaction, even though DD interactions are generally characterized by low affinities. The first publication of this work focuses on the Peptide-Antimicrobial-Xenorhabdus peptide-producing NRPS called PaxS, which consists of the three proteins PaxA, PaxB and PaxC. Here, in particular the trans DD interface between the C-terminal attached DD of PaxB and N-terminal attached DD of PaxC was structurally investigated and thermodynamically characterized by isothermal titration calorimetry (ITC), yielding a dissociation constant (KD) of ~25 µM, which is a DD typical affinity known from further characterized DD pairs. The artificial linking of the PaxB/C C/NDD pair via a glycine-serine (GS) linker facilitated the structure determination of the DD complex by solution nuclear magnetic resonance (NMR) spectroscopy. In comparison to known docking domain structures, this DD complex assembles in a completely new fold which is characterized by a central α-helix of PaxC NDD wrapped in two V-shaped α-helices of PaxB CDD. The first manuscript of this work focuses on the application of synthetic zippers (SZ) to mimic natural docking domains, enabling the easy assembly of NRPS building blocks encoded on different plasmids in a functional way. Here, the high-affinity interaction of SZs unambiguously defines the order of the synthetases derived from single-protein NRPSs in the engineered NRPS system and allows the recombination in a plug-and-play manner. Notably, the SZ engineering strategy even facilitates the functional assembly of NRPSs derived from Gram-positive and Gram-negative bacteria. Furthermore, the functional incorporation of SZs into NRPS modules is not limited to a specific linker region, so we could introduce them within all native NRPS linker regions (A-T, T-C, C-A). The second publication and the second manuscript of this thesis again focus on the multi-protein PaxS, in particular on the trans interface between the proteins PaxA and PaxB on a molecular level by solution NMR. Therefore, the PaxA CDD adjacent T domain was included into the structural investigation besides the native interaction partner PaxB NDD. Before a three-dimensional structure could be obtained from NMR data, the NH groups located in the peptide bonds had to be assigned to the respective amino acids of the proteins (backbone assignment). Based on these backbone assignments, the secondary structure of PaxA T1-CDD and PaxB NDD in the absence and presence of the respective interaction partner were predicted. The structural and functional characterization of the PaxA T1-CDD:PaxB NDD complex is summarized in manuscript two. The thermodynamic analysis of this complex by ITC determined a KD value of ~250 nM, whereas the discrete DDs did not interact at all. The high-affinity interaction allowed to determine the solution NMR structure of the PaxA T1-CDD:PaxB NDD complex without the covalent linkage of the interaction partners and an extended docking domain interface could be determined. This interface comprises on the one hand α-helix 4 of the PaxA T1 domain together with the α-helical CDD, and on the other hand the PaxB NDD, which is composed of two α-helices separated by a sharp bend. ...


2019 ◽  
Vol 20 (21) ◽  
pp. 5507 ◽  
Author(s):  
Vladimir Kubyshkin ◽  
Nediljko Budisa

A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.


2014 ◽  
Vol 5 (2) ◽  
pp. 819-830 ◽  
Author(s):  
Ulla I. M. Gerling ◽  
Mario Salwiczek ◽  
Cosimo D. Cadicamo ◽  
Holger Erdbrink ◽  
Constantin Czekelius ◽  
...  

2020 ◽  
Author(s):  
Antara Sengupta ◽  
Pabitra Pal Choudhury ◽  
Subhadip Chakraborty ◽  
Swarup Roy ◽  
Jayanta Kumar Das ◽  
...  

Motivation: Alteration of amino acid is possible due to mutation in codons that could have a potential impact in a diseased condition. Effective mutation analysis can help to predict the fate of the diseased individual which can be validated later by in-vitro experimentations. It may also help an individual who is asymptomatic but having a particular genetic change for early detection and diagnosis during any terminal diseases. We try to investigate the codon alteration patterns and its impact during mutation for the genes known to be responsible for a particular disease.Results: For our current study, we consider neurodegenerative and monogenic diseases. We use numerical representation based on a determinative degree and classification of codons as well as amino acids into three different classes (Strong, Weak and Transition) for the analysis. Our analysis reveals that the strong class codons are highly mutated followed by weak and transition class. We observe that most of the mutations occur in the first or second positions in the codon rather than the third. While looking into the chemical properties of amino acid, we observe that amino acids belong to the aliphatic group are affected most during missense mutations. Our investigation further emphasises that in most of the cases the change in the determinative degree of codon due to mutation is directly proportional to the physical density property. In addition, our scheme gives a more microscopic and alternative representation of the existing codon table that helps in deciphering interesting codon alteration patterns during mutations in disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document