On the elastic properties of model suspensions as investigated by creep recovery measurements in shear

2002 ◽  
Vol 41 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Michael Schmidt ◽  
Helmut Münstedt
1964 ◽  
Vol 41 (2) ◽  
pp. 363-369
Author(s):  
R. McN. ALEXANDER

The mesogloea of Scyphozoa (Cymrea and Chrysaora) differs from that of Anthozoa in having higher elastic compliance, in having a broad distribution of retardation times, and in that creep recovery is very slow. In the second of these properties the scyphozoan mesogloea resembles simple polymeric gels.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Author(s):  
A.R. Thölén

Thin electron microscope specimens often contain irregular bend contours (Figs. 1-3). Very regular bend patterns have, however, been observed around holes in some ion-milled specimens. The purpose of this investigation is twofold. Firstly, to find the geometry of bent specimens and the elastic properties of extremely thin foils and secondly, to obtain more information about the background to the observed regular patterns.The specimen surface is described by z = f(x,y,p), where p is a parameter, eg. the radius of curvature of a sphere. The beam is entering along the z—direction, which coincides with the foil normal, FN, of the undisturbed crystal surface (z = 0). We have here used FN = [001]. Furthermore some low indexed reflections are chosen around the pole FN and in our fcc crystal the following g-vectors are selected:


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-729-C8-734
Author(s):  
A.I. Lotkov ◽  
V.P. Lapshin ◽  
V.A. Goncharova ◽  
H.V Chernysheva ◽  
V.N. Grishkov ◽  
...  

2015 ◽  
Vol 185 (11) ◽  
pp. 1215-1224 ◽  
Author(s):  
Yurii Kh. Vekilov ◽  
Oleg M. Krasil'nikov ◽  
Andrei V. Lugovskoy

2011 ◽  
Vol 3 (9) ◽  
pp. 429-431
Author(s):  
P.Vasantharani P.Vasantharani ◽  
◽  
N. Sangeetha N. Sangeetha

2012 ◽  
Vol 2 (5) ◽  
pp. 546-548
Author(s):  
P. Vasantharani P. Vasantharani ◽  
◽  
I.Sankeeda I.Sankeeda

2012 ◽  
Vol 40 (3-4) ◽  
pp. 211-240
Author(s):  
Péter Árva ◽  
István Sajtos
Keyword(s):  

2006 ◽  
Vol 9 (4) ◽  
pp. 335-355 ◽  
Author(s):  
Mariusz Kaczmarek ◽  
Marc Goueygou

Sign in / Sign up

Export Citation Format

Share Document