scholarly journals Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration

2017 ◽  
Vol 134 (6) ◽  
pp. 869-888 ◽  
Author(s):  
Mohamed Attia ◽  
Marie Maurer ◽  
Marieke Robinet ◽  
Fabien Le Grand ◽  
Elie Fadel ◽  
...  
2018 ◽  
Vol 46 (6) ◽  
pp. 2271-2283 ◽  
Author(s):  
Lianjie Hou ◽  
Jian Xu ◽  
Yiren Jiao ◽  
Huaqin Li ◽  
Zhicheng Pan ◽  
...  

Background/Aims: Skeletal muscle plays an essential role in the body movement. However, injuries to the skeletal muscle are common. Lifelong maintenance of skeletal muscle function largely depends on preserving the regenerative capacity of muscle. Muscle satellite cells proliferation, differentiation, and myoblast fusion play an important role in muscle regeneration after injury. Therefore, understanding of the mechanisms associated with muscle development during muscle regeneration is essential for devising the alternative treatments for muscle injury in the future. Methods: Edu staining, qRT-PCR and western blot were used to evaluate the miR-27b effects on pig muscle satellite cells (PSCs) proliferation and differentiation in vitro. Then, we used bioinformatics analysis and dual-luciferase reporter assay to predict and confirm the miR-27b target gene. Finally, we elucidate the target gene function on muscle development in vitro and in vivo through Edu staining, qRT-PCR, western blot, H&E staining and morphological observation. Result: miR-27b inhibits PSCs proliferation and promotes PSCs differentiation. And the miR-27b target gene, MDFI, promotes PSCs proliferation and inhibits PSCs differentiation in vitro. Furthermore, interfering MDFI expression promotes mice muscle regeneration after injury. Conclusion: our results conclude that miR-27b promotes PSCs myogenesis by targeting MDFI. These results expand our understanding of muscle development mechanism in which miRNAs and genes work collaboratively in regulating skeletal muscle development. Furthermore, this finding has implications for obtaining the alternative treatments for patients with the muscle injury.


2019 ◽  
Author(s):  
Liangqiang He ◽  
Yingzhe Ding ◽  
Yu Zhao ◽  
Karl K. So ◽  
Xianlu L. Peng ◽  
...  

ABSTRACTSkeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for injury induced muscle regeneration. Despite advances in the knowledge of molecular mechanisms regulating SC lineage progression, our understanding of key transcription factors (TFs) and their regulatory functions in SCs in particularly the quiescent and early activation stages remains incomplete due to the lack of efficient method to screen and investigate the stage-specific key TFs. In this study, we succeeded in defining a distinct list of key TFs in early stages of SC fate transition using the paradigm of super enhancers (SEs). Particularly, leveraging the Cre-dependent Cas9 knockin mice and AAV9 mediated sgRNAs delivery, we generated a facile muscle specific genome editing system which allows gene depletion in SCs in vivo. Using MyoD locus as a proof of concept, we demonstrated that this CRISPR/Cas9/AAV9-sgRNA system can efficiently introduce mutagenesis at target locus and recapture the phenotypes reported in knockout mice. Further application of the system on key TFs, Myc, Bcl6 and Pknox2, revealed their distinct functions in the early stage of SC activation and damage induced muscle regeneration. Altogether our findings have proven the CRISPR/Cas9/AAV9-sgRNA system as a robust way for in vivo genome editing and elucidation of key factors governing SC activities.


2007 ◽  
Vol 328 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Yuki Tajika ◽  
Mahito Sato ◽  
Tohru Murakami ◽  
Kuniaki Takata ◽  
Hiroshi Yorifuji

2006 ◽  
Vol 31 (6) ◽  
pp. 773-781 ◽  
Author(s):  
Gianni Parise ◽  
Ciara E. O’Reilly ◽  
Michael A. Rudnicki

Skeletal muscle regeneration and adaptation to exercise require the actions of muscle satellite cells. Muscle satellite cells are thought to play an integral role in the process of exercise adaptation, but have also been shown to possess the capacity to fully regenerate muscle tissue following destructive muscle injury. We now know that molecular regulation of satellite cells involves the coordinated actions of a series of transcriptional networks that leads to myogenic commitment, cell-cycle entry, proliferation, and terminal differentiation. Additionally, Pax7 is a paired-box transcription factor that has been identified as playing a critical role in satellite cell regulation. It remains debatable, however, whether Pax7 is required for the specification of satellite cells and (or) whether it is playing a vital role in self-renewal and maintenance of the satellite cell population. In recent years, the emergence of atypical myogenic progenitor populations has added a new dimension to muscle repair, and significant interest has been focused on identifying populations such as bone-marrow-derived stem cells that have the ability to contribute to muscle. Interestingly, elucidating the molecular regulation of myogenic progenitor populations has involved animal models of muscle regeneration, with questionable relevance for human muscle adaptation to exercise. This paper highlights the current state of knowledge on the molecular regulation of satellite cells, explores the potential contribution of atypical myogenic progenitors, and discusses the information gathered from animal regeneration models in terms of its relevance to the process of exercise adaptation.


2007 ◽  
Vol 113 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Miyuki Hirata ◽  
Kunihiro Sakuma ◽  
Seiichiro Okajima ◽  
Hiroyoshi Fujiwara ◽  
Shuichiro Inashima ◽  
...  

Cell Reports ◽  
2016 ◽  
Vol 16 (8) ◽  
pp. 2102-2115 ◽  
Author(s):  
Han Zhu ◽  
Fang Xiao ◽  
Gang Wang ◽  
Xiuqing Wei ◽  
Lei Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document