Differential expression between synaptic vesicle proteins and presynaptic plasma membrane proteins in the anterior horn of amyotrophic lateral sclerosis

2002 ◽  
Vol 103 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Akito Ikemoto ◽  
Ichiro Akiguchi ◽  
Asao Hirano ◽  
Shinichi Nakamura
1995 ◽  
Vol 129 ◽  
pp. 68-74 ◽  
Author(s):  
Davide Schiffer ◽  
Susanna Cordera ◽  
Maria Teresa Giordana ◽  
Angelo Attanasio ◽  
Tiziana Pezzulo

1999 ◽  
Vol 112 (20) ◽  
pp. 3559-3567
Author(s):  
P. Taubenblatt ◽  
J.C. Dedieu ◽  
T. Gulik-Krzywicki ◽  
N. Morel

Synaptic vesicle docking and exocytosis require the specific interaction of synaptic vesicle proteins (such as VAMP/synaptobrevin) with presynaptic plasma membrane proteins (such as syntaxin and SNAP 25). These proteins form a stable, SDS-resistant, multimolecular complex, the SNARE complex. The subcellular distribution of VAMP and syntaxin within Torpedo electric organ nerve endings was studied by immunogoldlabeling of SDS-digested freeze-fracture replicas (Fujimoto, 1995). This technique allowed us to visualize large surface areas of the presynaptic plasma membrane and numerous synaptic vesicles from rapidly frozen nerve endings and synaptosomes. VAMP was found associated with synaptic vesicles, as also shown by conventional electron microscopy immunolabeling, and to the presynaptic plasma membrane (P leaflet). Syntaxin was also detected in the nerve ending plasma membrane, without gold labeling of synaptic vesicles. Comparison of gold particle densities suggests that the presynaptic plasma membrane contains 3 VAMP molecules per molecule of syntaxin. After biotinylation of intact synaptosomes, the synaptosomal plasma membrane was isolated on Streptavidin coated magnetic beads. Its antigenic content was compared to that of purified synaptic vesicles. VAMP was present in both membranes whereas syntaxin and SNAP 25 were highly enriched in the synaptosomal plasma membrane. This membrane has a low content of classical synaptic vesicle proteins (synaptophysin, SV2 and the vesicular acetylcholine transporter). The VAMP to syntaxin stoichiometry in the isolated synaptosomal membrane was estimated by comparison with purified antigens and close to 2, in accordance with morphological data. SDS-resistant SNARE complexes were detected in the isolated presynaptic membrane but absent in purified synaptic vesicles. Taken together, these results show that the presence of VAMP in the plasma membrane of nerve endings cannot result from exocytosis of synaptic vesicles, a process which could, as far as SNAREs are concerned, very much resemble homotypic fusion.


1998 ◽  
Vol 140 (3) ◽  
pp. 659-674 ◽  
Author(s):  
Takao Nakata ◽  
Sumio Terada ◽  
Nobutaka Hirokawa

Newly synthesized membrane proteins are transported by fast axonal flow to their targets such as the plasma membrane and synaptic vesicles. However, their transporting vesicles have not yet been identified. We have successfully visualized the transporting vesicles of plasma membrane proteins, synaptic vesicle proteins, and the trans-Golgi network residual proteins in living axons at high resolution using laser scan microscopy of green fluorescent protein-tagged proteins after photobleaching. We found that all of these proteins are transported by tubulovesicular organelles of various sizes and shapes that circulate within axons from branch to branch and switch the direction of movement. These organelles are distinct from the endosomal compartments and constitute a new entity of membrane organelles that mediate the transport of newly synthesized proteins from the trans-Golgi network to the plasma membrane.


The Breast ◽  
2015 ◽  
Vol 24 ◽  
pp. S67
Author(s):  
Michelle M. Martinez-Montemayor ◽  
Ivette J. Suarez-Arroyo ◽  
Yismeilin Feliz-Mosquea ◽  
Juliana Perez-Laspiur ◽  
Rezina Arju ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document