scholarly journals Age and traumatic brain injury as prognostic factors for late-phase mortality in patients defined as polytrauma according to the New Berlin Definition: experiences from a level I trauma center

Author(s):  
V. Weihs ◽  
V. Heel ◽  
M. Dedeyan ◽  
N. W. Lang ◽  
S. Frenzel ◽  
...  

Abstract Background The rationale of this study was to identify independent prognostic factors influencing the late-phase survival of polytraumatized patients defined according to the New Berlin Definition. Methods Retrospective data analysis on 173 consecutively polytraumatized patients treated at a level I trauma center between January 2012 and December 2015. Patients were classified into two groups: severely injured patients (ISS > 16) and polytraumatized patients (patients who met the diagnostic criteria for the New Berlin Definition). Results Polytraumatized patients showed significantly lower late-phase and overall survival rates. The presence of traumatic brain injury (TBI) and age > 55 years had a significant influence on the late-phase survival in polytraumatized patients but not in severely injured patients. Despite the percentage of severe TBI being nearly identical in both groups, severe TBI was identified as main cause of death in polytraumatized patients. Furthermore, severe TBI remains the main cause of death in polytraumatized patients > 55 years of age, whereas younger polytraumatized patients (< 55 years of age) tend to die more often due to the acute trauma. Conclusion Our results suggest that age beyond 55 years and concomitant (severe) TBI remain as most important influencing risk factor for the late-phase survival of polytraumatized patients but not in severely injured patients. Level of evidence Prognostic study, level III.

2020 ◽  
Vol 9 (8) ◽  
pp. 2568
Author(s):  
Daniel Popp ◽  
Claudius Thiedemann ◽  
Wolf Bäumler ◽  
Antonio Ernstberger ◽  
Volker Alt ◽  
...  

Introduction: Traumatic cervical artery dissections are associated with high mortality and morbidity in severely injured patients. After finding even higher incidences than reported before, we decided to incorporate a dedicated head-and-neck computed tomography angiogram (CT-A) in our imaging routine for patients who have been obviously severely injured or, according to trauma mechanism, are suspected to be severely injured. Materials and Methods: A total of 134 consecutive trauma patients with an ISS ≥ 16 admitted to our level I trauma center during an 18 month period were included. All underwent standardized whole-body CT in a 256-detector row scanner with a dedicated head-and-neck CT-A realized as single-bolus split-scan routine. Incidence, mortality, patient and trauma characteristics, and concomitant injuries were recorded and analyzed in patients with carotid artery dissection (CAD) and vertebral artery dissection (VAD). Results: Of the 134 patients included, 7 patients had at least one cervical artery dissection (CeAD; 5.2%; 95% CI 1.5–9.0%). Six patients (85.7%) had carotid artery dissections, with one patient having a CAD of both sides and one patient having a CAD and contralateral VAD combined. Two patients (28.6%) showed a VAD. Overall mortality was 14.3%, neurologic morbidity was 28.6%. None of the patients showed any attributable neurologic symptoms on admission. The new scanning protocol led to further 5 patients with suspected CeAD during the study period, all ruled out by additional magnetic resonance imaging with angiogram (MRI/MR-A). Conclusion: A lack of specific neurologic symptoms on admission urges the need for a dedicated imaging pathway for severely injured patients, reliable for the detection of cervical artery dissections. Although our modified CT protocol with mandatory dedicated CT-A led to false positives requiring additional magnetic resonance imaging, it likely helped reduce possible therapeutic delays.


2005 ◽  
Vol 59 (2) ◽  
pp. 529
Author(s):  
William E. Charash ◽  
Frederick B. Rogers ◽  
Michael P. Caputo ◽  
Bruce A. Crookes ◽  
Peter W. Callas ◽  
...  

Author(s):  
David S. Morris

Nearly 200,000 people die of injury-related causes in the United States each year, and injury is the leading cause of death for all patients aged 1 to 44 years. Approximately 30 million people sustain nonfatal injuries each year, which results in about 29 million emergency department visits and 3 million hospital admissions. Management of severely injured patients, typically defined as having an Injury Severity Score greater than 15 is best managed in a level I or level II trauma center. Any physician who provides care for critically ill patients should have a basic familiarity with the fundamentals of trauma care.


2014 ◽  
Vol 80 (11) ◽  
pp. 1132-1135 ◽  
Author(s):  
Peter E. Fischer ◽  
Paul D. Colavita ◽  
Gregory P. Fleming ◽  
Toan T. Huynh ◽  
A. Britton Christmas ◽  
...  

Transfer of severely injured patients to regional trauma centers is often expedited; however, transfer of less-injured, older patients may not evoke the same urgency. We examined referring hospitals’ length of stay (LOS) and compared the subsequent outcomes in less-injured transfer patients (TP) with patients presenting directly (DP) to the trauma center. We reviewed the medical records of less-injured (Injury Severity Score [ISS] 9 or less), older (age older than 60 years) patients transferred to a regional Level 1 trauma center to determine the referring facility LOS, demographics, and injury information. Outcomes of the TP were then compared with similarly injured DP using local trauma registry data. In 2011, there were 1657 transfers; the referring facility LOS averaged greater than 3 hours. In the less-injured patients (ISS 9 or less), the average referring facility LOS was 3 hours 20 minutes compared with 2 hours 24 minutes in more severely injured patients (ISS 25 or greater, P < 0.05). The mortality was significantly lower in the DP patients (5.8% TP vs 2.6% DP, P = 0.035). Delays in transfer of less-injured, older trauma patients can result in poor outcomes including increased mortality. Geographic challenges do not allow for every patient to be transported directly to a trauma center. As a result, we propose further outreach efforts to identify potential causes for delay and to promote compliance with regional referral guidelines.


Author(s):  
Alexander Bumberger ◽  
Tomas Braunsteiner ◽  
Johannes Leitgeb ◽  
Thomas Haider

Abstract Background Measurement of intracranial pressure (ICP) is an essential part of clinical management of severe traumatic brain injury (TBI). However, clinical utility and impact on clinical outcome of ICP monitoring remain controversial. Follow-up imaging using cranial computed tomography (CCT) is commonly performed in these patients. This retrospective cohort study reports on complication rates of ICP measurement in severe TBI patients, as well as on findings and clinical consequences of follow-up CCT. Methods We performed a retrospective clinical chart review of severe TBI patients with invasive ICP measurement treated at an urban level I trauma center between January 2007 and September 2017. Results Clinical records of 213 patients were analyzed. The mean Glasgow Coma Scale (GCS) on admission was 6 with an intra-hospital mortality of 20.7%. Overall, complications in 12 patients (5.6%) related to the invasive ICP-measurement were recorded of which 5 necessitated surgical intervention. Follow-up CCT scans were performed in 192 patients (89.7%). Indications for follow-up CCTs included routine imaging without clinical deterioration (n = 137, 64.3%), and increased ICP values and/or clinical deterioration (n = 55, 25.8%). Follow-up imaging based on clinical deterioration and increased ICP values were associated with significantly increased likelihoods of worsening of CCT findings compared to routinely performed CCT scans with an odds ratio of 5.524 (95% CI 1.625–18.773) and 6.977 (95% CI 3.262–14.926), respectively. Readings of follow-up CCT imaging resulted in subsequent surgical intervention in six patients (3.1%). Conclusions Invasive ICP-monitoring in severe TBI patients was safe in our study population with an acceptable complication rate. We found a high number of follow-up CCT. Our results indicate that CCT imaging in patients with invasive ICP monitoring should only be considered in patients with elevated ICP values and/or clinical deterioration.


2021 ◽  
Vol 10 (8) ◽  
pp. 1700
Author(s):  
Charlie Sewalt ◽  
Esmee Venema ◽  
Erik van Zwet ◽  
Jan van Ditshuizen ◽  
Stephanie Schuit ◽  
...  

Centralization of trauma centers leads to a higher hospital volume of severely injured patients (Injury Severity Score (ISS) > 15), but the effect of volume on outcome remains unclear. The aim of this study was to determine the association between hospital volume of severely injured patients and in-hospital mortality in Dutch Level-1 trauma centers. A retrospective observational cohort study was performed using the Dutch trauma registry. All severely injured adults (ISS > 15) admitted to a Level-1 trauma center between 2015 and 2018 were included. The effect of hospital volume on in-hospital mortality was analyzed with random effects logistic regression models with a random intercept for Level-1 trauma center, adjusted for important demographic and injury characteristics. A total of 11,917 severely injured patients from 13 Dutch Level-1 trauma centers was included in this study. Hospital volume varied from 120 to 410 severely injured patients per year. Observed mortality rates varied between 12% and 24% per center. After case-mix correction, no statistically significant differences between low- and high-volume centers were demonstrated (adjusted odds ratio 0.97 per 50 extra patients per year, 95% Confidence Interval 0.90–1.04, p = 0.44). The variation in hospital volume of the included Level-1 trauma centers was not associated with the outcome of severely injured patients. Our results suggest that well-organized trauma centers with a similar organization of care could potentially achieve comparable outcomes.


Sign in / Sign up

Export Citation Format

Share Document