scholarly journals Correction to: Phosphorus and aluminum zoning in olivine: contrasting behavior of two nominally incompatible trace elements

2019 ◽  
Vol 174 (12) ◽  
Author(s):  
Thomas Shea ◽  
Julia E. Hammer ◽  
Eric Hellebrand ◽  
Adrien J. Mourey ◽  
Fidel Costa ◽  
...  
2015 ◽  
Vol 45 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Saulo Gobbo Menezes ◽  
Rogério Guitarrari Azzone ◽  
Gaston Eduardo Enrich Rojas ◽  
Excelso Ruberti ◽  
Renata Cagliarani ◽  
...  

The question of whether the antecryst assemblage affects the bulk composition of lamprophyre dykes, and could be responsible for the compositional zonation between their centers and borders is addressed through a detailed study involving four monchiquite and camptonite dykes (basanites and tephrites) representative of the Arco de Ponta Grossa and Serra do Mar alkaline provinces. In them, antecrysts are interpreted as early-crystallized minerals that are no longer in equilibrium with their host-liquid, albeit still linked to the same magmatic system. They represent recycled crystals of earlier stages of the magmatic system at depth. The antecryst microtextures, such as zoned clinopyroxene megacrysts (augite cores and titanaugite rims) with partly corroded cores, olivine crystals with corroded rims surrounded by biotite coronas, chrome-spinel inclusions in clinopyroxene and olivine megacryst cores, and titanomagnetite crystals surrounded by biotite coronas, suggest chemical re-equilibrium with the matrix. The greatest antecryst cargo in these dykes is found in their centers. After subtracting the antecryst volume from the center analyses of each body, the calculated compositions are very similar to the border analyses. The mafic antecryst cargo of each occurrence proportionally leads to enrichment of MgO, FeO, TiO2, CaO, compatible trace elements (Cr, Ni and Co), and depletion of SiO2, K2O, Na2O, Al2O3 and incompatible trace elements (Ba, Sr and REE). The whole-rock geochemical analyses of each dyke represent the combination of accumulated crystals and melt. The compositional zonation of the studied dykes is associated with the antecryst cargo rather than different magmatic pulses.


F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


The alkaline rocks of Carboniferous to Permian age in the Midland Valley province range in composition from hypersthene-normative, transitional basalts to strongly undersaturated basanitic and nephelinitic varieties. They were formed by varying degrees of equilibrium partial melting of a phlogopite peridotite mantle. Ba, Ce, Nb, P, Sr and Zr were strongly partitioned into the liquid during melting; K and Rb were retained by residual phlogopite for small degrees of melting only. The composition of the mantle source is inferred to have been broadly similar to that from which oceanic alkaline basalts are currently being generated. It was, however, heterogeneous as regards distribution of the incompatible trace elements, with up to fourfold variations in elemental abundances and ratios. The mantle beneath the province may be divisible into several areas, of some hundreds of square kilometres each, which retained a characteristic incompatible element chemistry for up to 50 Ma and which imparted a distinctive chemistry to all the basic magmas generated within them.


1995 ◽  
Vol 133 (3-4) ◽  
pp. 379-395 ◽  
Author(s):  
Alex N. Halliday ◽  
Der-Chuen Lee ◽  
Simone Tommasini ◽  
Gareth R. Davies ◽  
Cassi R. Paslick ◽  
...  

2021 ◽  
Author(s):  
Lingquan Zhao ◽  
Sumit Chakraborty ◽  
Hans-Peter Schertl

<p>The Xigaze ophiolite (Tibet), which occurs in the central segment of the Yarlung Zangbo Suture Zone, exposes a complete portion of a mantle sequence that consists essentially of fresh as well as serpentinized peridotites. We studied a sequence beneath the crustal section that exposes fresh, Cpx-bearing harzburgites and dunites that are underlain by serpentinized Cpx-bearing harzburgites and dunites. The rocks at the bottom are crosscut by dykes that have undergone different degrees of rodingitization. The modal compositions of peridotite from both fresh and serpentinized sections plot in abyssal upper mantle fields, with clinopyroxene modes less than 5 vol. %. Although harzburgites and dunites indicate that melt has been lost relative to primitive mantle compositions, the trace element patterns carry signatures of enrichment in incompatible elements, such as (i) “bowl-shaped” patterns of trace elements in silicate-Earth normalized spider diagrams, (ii) positive anomalies in highly incompatible trace elements such as Rb, Th, U, Ta, and (iii) enrichment of LREE in the clinopyroxenes from dunites and harzburgites. These features are indicative of complex melt transfer processes and cannot be produced by simple melt extraction. Petrographic studies reveal that harzburgite and dunite contain interstitial polyphase aggregates of olivine + Cpx + spinel + Opx and olivine + Cpx + Spinel, respectively. Experimental studies (e.g. Morgan and Liang, 2003) suggest that these aggregates represent frozen melt-rich components, indicating that fertile melt was percolating through the depleted harzburgite – dunite matrix. Presence of such “melt pods” would explain the trace element enrichment patterns of the bulk rock, as well as features such as reverse zoning (core: Cr, Fe<sup>2+</sup> rich, rim: Al, Mg rich) of spinels in polyphase aggregates in fresh dunites. These results show that melt extraction from the mantle is not a single stage process, and that evidence of multiple melt pulses that propagated through a rock are preserved in the petrographic features as well as in the form of chemical signatures that indicate refertilization of initially depleted rocks.</p>


The early major products of Tertiary volcanicity in both Skye and Mull are transitional basic lavas, similar in their major-element chemistry to world-wide alkali basalt series. In contrast, their contents of incompatible trace elements bear more resemblance to those of olivine tholeiites. The Mull basalts have similar ranges of silica saturation, Mg/(Mg+Fe), Y and Yb, but lower overall abundance ranges of strongly incompatible elements than the Skye basalts. The variation of incompatible elements in the Mull and Skye lavas is consistent with a model of a mantle source from which a small amount of melt (no more than 1 % ?) had been extracted, with the pre-Tertiary upper-mantle fusion beneath Mull slightly greater than beneath Skye. Chemical and tectonic considerations suggest that this mantle was neither residual from the formation of the Archaean Lewisian complex, nor emplaced as a result of tension associated with the Gainozoic rifting of the North Atlantic. Data on major and trace elements for a mafic alkalic dyke of the Permian swarms that pass through western Scotland show that these have the requisite geochemical characteristics to have caused this depletion. Such dykes are more abundant in the region of Mull than Skye.


2003 ◽  
Vol 140 (4) ◽  
pp. 373-395 ◽  
Author(s):  
T. GRENNE ◽  
R. B. PEDERSEN ◽  
T. BJERKGÅRD ◽  
A. BRAATHEN ◽  
M. G. SELASSIE ◽  
...  

New geochemical, isotopic and age data from igneous rocks complement earlier models of a long-lived and complex accretionary history for East African Orogen lithologies north of the Blue Nile in western Ethiopia, but throw doubt on the paradigm that ultramafic complexes of the region represent ophiolites and suture zones. Early magmatism is represented by a metavolcanic sequence dominated by pyroclastic deposits of predominantly basaltic andesite composition, which give a Rb–Sr whole-rock errorchron of 873±82 Ma. Steep REE patterns and strong enrichments of highly incompatible trace elements are similar to Andean-type, high-K to medium-K calc-alkaline rocks; εNd values between 4.0 and 6.8 reflect a young, thin continental edge. Interlayered basaltic flows are transitional to MORB and compare with mafic rocks formed in extensional, back-arc or inter-arc regimes. The data point to the significance of continental margin magmatism already at the earliest stages of plate convergence, in contrast with previous models for the East African Orogen. The metavolcanites overlap compositionally with the Kilaj intrusive complex dated at 866±20 Ma (U–Pb zircon) and a related suite of dykes that intrude thick carbonate-psammite sequences of supposedly pre-arc, continental shelf origin. Ultramafic complexes are akin to the Kilaj intrusion and the sediment-hosted dykes, and probably represent solitary intrusions formed in response to arc extension. Synkinematic composite plutons give crystallization ages of 699±2 Ma (Duksi, U–Pb zircon) and 651±5 Ma (Dogi, U–Pb titanite) and testify to a prolonged period of major (D1) contractional deformation during continental collision and closure of the ‘Mozambique Ocean’. The plutons are characterized by moderately peraluminous granodiorites and granites with εNd values of 1.0–2.0. They were coeval with shoshonitic, latitic, trachytic and rare trachybasaltic intrusions with very strong enrichments of highly incompatible trace elements and εNd of 0.4–8.0. The mafic end-member is ascribed to partial melting of enriched sub-continental mantle that carried a subduction component inherited from pre-collision subduction. Contemporaneous granodiorite and granite formation was related to crustal underplating of the mafic magmas and consequent melting of lower crustal material derived from the previously accreted, juvenile arc terranes of the East African Orogen.


Sign in / Sign up

Export Citation Format

Share Document