scholarly journals Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): part I—major elements and phase equilibria

Author(s):  
Wendy A. Bohrson ◽  
Frank J. Spera ◽  
Jussi S. Heinonen ◽  
Guy A. Brown ◽  
Melissa A. Scruggs ◽  
...  
Author(s):  
Jussi S. Heinonen ◽  
Wendy A. Bohrson ◽  
Frank J. Spera ◽  
Guy A. Brown ◽  
Melissa A. Scruggs ◽  
...  

Abstract The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphase–multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt ± solids ± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solid–fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical “rules of thumb”. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.


2021 ◽  
Author(s):  
Kieran Iles ◽  
Jussi Heinonen

<p>Understanding the causes of major and trace element variations of granite samples as well as their isotopic signatures is central to attempts to place these rocks in the context of broader geologic processes and continent evolution. For the granites of the Lachlan and New England Fold Belts (LFB and NEFB) of Australia there has been great debate between competing petrogenetic models. The open-system view that the isotopic variability and within-suite compositional trends can be accounted for by magma mixing and fractional crystallisation stands in contrast to the restite unmixing model, in which the geochemical features of certain granites are inherited from protoliths that underwent partial melting to produce magmas entraining varying proportions of residual material. Reconciling all aspects of the geochemical data in a mixing model is contingent on a plausible fractionation regime to produce the observed consistently linear (or near-linear) trends on Harker diagrams; however, the plausibility of existing fractional crystallisation models for LFB granites has not previously been tested with consideration of phase equilibria.</p><p>The Magma Chamber Simulator (MCS) models fractional crystallisation alone or with assimilation (AFC), constraining phase equilibria using MELTS and accounting for the thermal budget. This sophisticated modelling tool was used to conduct a case study of the I-type Jindabyne Suite of granites from the LFB, testing whether thermodynamically feasible geochemical trends matching the observed linear variations can arise through fractional crystallisation (with or without assimilation of supracrustal material). The results of 112 MCS models show (1) that for major elements liquid lines of descent (LLDs) may be sensibly linear over limited compositional ranges, (2) that the involvement of assimilation extends the range in which trends are relatively simple and near-linear, and (3) that, despite these observations, neither fractional crystallisation nor AFC are able to correctly reproduce the geochemical evolution of the I-type Jindabyne Suite granitoids as an LLD (contrary to existing models), instead persistently producing curved and kinked trends. The output of these simulations were further used to explore models in which: (a) crystal-bearing magmas evolve via fractional crystallisation or AFC (with chemical isolation assumed to be achieved through crystal zoning) and undergo varying degrees of melt-crystal segregation at different stages to produce the sample compositions; and (b) in situ crystallisation occurs via fractional crystallisation within the crystallisation zone, driving the evolution of a liquid resident magma, which the samples represent. These models are able to reproduce the Jindabyne Suite trends reasonably well. The modelling implies that fractional crystallisation, or some variant thereof, is a viable explanation for the linear trends in Jindabyne; however, tendency for grossly non-linear LLDs highlights that it should not be assumed that fractional crystallisation can generally explain linear trends in granites without careful modelling such as shown here.</p>


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Silvio Mollo ◽  
Flavio Di Stefano ◽  
Francesca Forni

This Special Issue of Minerals collects seven different scientific contributions highlighting how magma chamber processes and eruption dynamics studied either in the laboratory or in nature may ultimately control the evolutionary histories and geochemical complexities of igneous rocks [...]


2014 ◽  
Vol 55 (9) ◽  
pp. 1685-1717 ◽  
Author(s):  
Wendy A. Bohrson ◽  
Frank J. Spera ◽  
Mark S. Ghiorso ◽  
Guy A. Brown ◽  
Jeffrey B. Creamer ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiara Maria Petrone ◽  
Giuseppe Bugatti ◽  
Eleonora Braschi ◽  
Simone Tommasini

Sign in / Sign up

Export Citation Format

Share Document