scholarly journals Thermodynamic Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator

2014 ◽  
Vol 55 (9) ◽  
pp. 1685-1717 ◽  
Author(s):  
Wendy A. Bohrson ◽  
Frank J. Spera ◽  
Mark S. Ghiorso ◽  
Guy A. Brown ◽  
Jeffrey B. Creamer ◽  
...  
1975 ◽  
Vol 12 (5) ◽  
pp. 721-730 ◽  
Author(s):  
Giorgio Rivalenti

In the Fiskenaesset region (West Greenland), there are three generations of postorogenic doleritic dikes of tholeiitic affinity. Two types of differentiation are evident: (a) laterally from the contacts to center and vertically, with the upper centres of the youngest generation of dikes attaining an andesitic or rhyolitic composition; and (b) between the different generations of dikes.Major and trace element geochemistry and calculations of the cumulus composition indicate that the differentiation within dikes is due not to flow, but to a shallow crustal fractionation of an olivine tholeiite magma. The differentiation between the various generations is attributed to fractionation of an olivine tholeiite magma during its upward displacement from a deep crustal magma chamber.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 736 ◽  
Author(s):  
Julio A. López-Saldívar ◽  
Octavio Castaños ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko

The evolution of an open system is usually associated with the interaction of the system with an environment. A new method to study the open-type system evolution of a qubit (two-level atom) state is established. This evolution is determined by a unitary transformation applied to the qutrit (three-level atom) state, which defines the qubit subsystems. This procedure can be used to obtain different qubit quantum channels employing unitary transformations into the qutrit system. In particular, we study the phase damping and spontaneous-emission quantum channels. In addition, we mention a proposal for quasiunitary transforms of qubits, in view of the unitary transform of the total qutrit system. The experimental realization is also addressed. The probability representation of the evolution and its information-entropic characteristics are considered.


2004 ◽  
Vol 69 (1) ◽  
Author(s):  
Irena Knezevic ◽  
David K. Ferry
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document