The role of nonhomologous end joining and homologous recombination in the clonogenic bystander effects of mammalian cells after exposure to counted 10 MeV protons and 4.5 MeV α-particles of the PTB microbeam

2008 ◽  
Vol 47 (4) ◽  
pp. 431-438 ◽  
Author(s):  
Dieter Frankenberg ◽  
Klaus-D. Greif ◽  
Wolfgang Beverung ◽  
Frank Langner ◽  
Ulrich Giesen
2020 ◽  
Vol 295 (37) ◽  
pp. 12946-12961
Author(s):  
Soichiro S. Ito ◽  
Yosuke Nakagawa ◽  
Masaya Matsubayashi ◽  
Yoshihiko M. Sakaguchi ◽  
Shinko Kobashigawa ◽  
...  

The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV– and chemotherapeutic drug–induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU–treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU–based chemotherapy.


2009 ◽  
Vol 16 (8) ◽  
pp. 819-824 ◽  
Author(s):  
Emilie Rass ◽  
Anastazja Grabarz ◽  
Isabelle Plo ◽  
Jean Gautier ◽  
Pascale Bertrand ◽  
...  

2007 ◽  
Vol 27 (7) ◽  
pp. 2562-2571 ◽  
Author(s):  
Alihossein Saberi ◽  
Helfrid Hochegger ◽  
David Szuts ◽  
Li Lan ◽  
Akira Yasui ◽  
...  

ABSTRACT The Saccharomyces cerevisiae RAD18 gene is essential for postreplication repair but is not required for homologous recombination (HR), which is the major double-strand break (DSB) repair pathway in yeast. Accordingly, yeast rad18 mutants are tolerant of camptothecin (CPT), a topoisomerase I inhibitor, which induces DSBs by blocking replication. Surprisingly, mammalian cells and chicken DT40 cells deficient in Rad18 display reduced HR-dependent repair and are hypersensitive to CPT. Deletion of nonhomologous end joining (NHEJ), a major DSB repair pathway in vertebrates, in rad18-deficient DT40 cells completely restored HR-mediated DSB repair, suggesting that vertebrate Rad18 regulates the balance between NHEJ and HR. We previously reported that loss of NHEJ normalized the CPT sensitivity of cells deficient in poly(ADP-ribose) polymerase 1 (PARP1). Concomitant deletion of Rad18 and PARP1 synergistically increased CPT sensitivity, and additional inactivation of NHEJ normalized this hypersensitivity, indicating their parallel actions. In conclusion, higher-eukaryotic cells separately employ PARP1 and Rad18 to suppress the toxic effects of NHEJ during the HR reaction at stalled replication forks.


2002 ◽  
Vol 22 (16) ◽  
pp. 5869-5878 ◽  
Author(s):  
Cecilia Lundin ◽  
Klaus Erixon ◽  
Catherine Arnaudeau ◽  
Niklas Schultz ◽  
Dag Jenssen ◽  
...  

ABSTRACT Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.


2007 ◽  
Vol 14 (7) ◽  
pp. 639-646 ◽  
Author(s):  
Yu Zhang ◽  
Melissa L Hefferin ◽  
Ling Chen ◽  
Eun Yong Shim ◽  
Hui-Min Tseng ◽  
...  

2004 ◽  
Vol 24 (12) ◽  
pp. 5130-5143 ◽  
Author(s):  
Christine Soustelle ◽  
Laurence Vernis ◽  
Karine Fréon ◽  
Anne Reynaud-Angelin ◽  
Roland Chanet ◽  
...  

ABSTRACT The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
K. C. Summers ◽  
F. Shen ◽  
E. A. Sierra Potchanant ◽  
E. A. Phipps ◽  
R. J. Hickey ◽  
...  

Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 550
Author(s):  
Matvey Mikhailovich Murashko ◽  
Ekaterina Mikhailovna Stasevich ◽  
Anton Markovich Schwartz ◽  
Dmitriy Vladimirovich Kuprash ◽  
Aksinya Nicolaevna Uvarova ◽  
...  

Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis’s primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.


2007 ◽  
Vol 6 (10) ◽  
pp. 1773-1781 ◽  
Author(s):  
Peter Burton ◽  
David J. McBride ◽  
Jonathan M. Wilkes ◽  
J. David Barry ◽  
Richard McCulloch

ABSTRACT DNA double-strand breaks (DSBs) are repaired primarily by two distinct pathways: homologous recombination and nonhomologous end joining (NHEJ). NHEJ has been found in all eukaryotes examined to date and has been described recently for some bacterial species, illustrating its ancestry. Trypanosoma brucei is a divergent eukaryotic protist that evades host immunity by antigenic variation, a process in which homologous recombination plays a crucial function. While homologous recombination has been examined in some detail in T. brucei, little work has been done to examine what other DSB repair pathways the parasite utilizes. Here we show that T. brucei cell extracts support the end joining of linear DNA molecules. These reactions are independent of the Ku heterodimer, indicating that they are distinct from NHEJ, and are guided by sequence microhomology. We also demonstrate bioinformatically that T. brucei, in common with other kinetoplastids, does not encode recognizable homologues of DNA ligase IV or XRCC4, suggesting that NHEJ is either absent or mechanistically diverged in these pathogens.


Sign in / Sign up

Export Citation Format

Share Document