Functionally graded piezoelectric cantilever beam under load

2004 ◽  
Vol 74 (3-4) ◽  
pp. 237-247 ◽  
Author(s):  
Z. F. Shi ◽  
Y. Chen
Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1222 ◽  
Author(s):  
Yongsheng Lian ◽  
Xiaoting He ◽  
Sijie Shi ◽  
Xue Li ◽  
Zhixin Yang ◽  
...  

In this study, we use a multi-parameter perturbation method to solve the problem of a functionally graded piezoelectric cantilever beam under combined loads, in which three piezoelectric coefficients are selected as the perturbation parameters. First, we derive the two basic equations concerning the Airy stress function and electric potential function. By expanding the unknown Airy stress function and electric potential function with respect to three perturbation parameters, the two basic equations were decoupled, thus obtaining the corresponding multi-parameter perturbation solution under boundary conditions. From the solution obtained, we can see clearly how the piezoelectric effects influence the behavior of the functionally graded piezoelectric cantilever beam. Based on a numerical example, the variations of the elastic stresses and displacements as well as the electric displacements of the cantilever beam under different gradient exponents were shown. The results indicate that if the pure functionally graded cantilever beam without a piezoelectric effect is regarded as an unperturbed system, the functionally graded piezoelectric cantilever beam can be looked upon as a perturbed system, thus opening the possibilities for perturbation solving. Besides, the proposed multi-parameter perturbation method provides a new idea for solving similar nonlinear differential equations.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1728 ◽  
Author(s):  
Xiao-Ting ◽  
Zhi-Xin ◽  
Hong-Xia ◽  
Jun-Yi

The existing studies indicate polymers will present obviously different properties in tension and compression (bimodular effect) which is generally ignored because of the complexity of the analysis. In this study, a functionally graded piezoelectric cantilever beam with bimodular effect was investigated via analytical and numerical methods, respectively, in which a one-dimensional theoretical solution was derived by neglecting some unimportant factors and a two-dimensional numerical simulation was performed based on the model of tension-compression subarea. A full comparison was made to show the rationality of one-dimensional theoretical solution and two-dimensional numerical simulation. The result indicates that the layered model of tension-compression subarea also makes it possible to use numerical technique to simulate the problem of functionally graded piezoelectric cantilever beam with bimodular effect. Besides, the modulus of elasticity E* and the bending stiffness D* proposed in the one-dimensional problem may succinctly describe the piezoelectric effect on the classical mechanical problem without electromechanical coupling, which shows the advantages of one-dimensional solution in engineering applications, especially in the analysis and design of energy harvesting/sensing/actuating devices made of piezoelectric polymers whose bimodular effect is relatively obvious.


Author(s):  
A. A. Emami ◽  
R. Hashemi ◽  
M. H. Kargarnovin ◽  
R. Naghdabadi

The electroelastic response of functionally graded piezoelectric cantilever beams which includes the effect of body force is presented in this paper. The material properties such as elastic compliance, piezoelectric and dielectric impermeability are assumed to be graded with different indices in the thickness direction according to exponential distributions. Systems of fourth order inhomogeneous partial differential equations (PDEs) which are satisfied by the stress and induction functions and involve the body force terms are derived. Spectral forms for electrical and mechanical variables in the x-axis are employed to convert the partial differential governing equations and the associated boundary conditions into sets of ordinary differential equations, and the resulting equations are solved in a closed form manner. Subsequently, in numerical studies, the effects of the material property graded indices are examined upon the electroelastic response of FGP cantilever beams under pure body force loadings.


2020 ◽  
Vol 10 (16) ◽  
pp. 5557
Author(s):  
Hong-Xia Jing ◽  
Xiao-Ting He ◽  
Da-Wei Du ◽  
Dan-Dan Peng ◽  
Jun-Yi Sun

Piezoelectric materials have been found to have many electromechanical applications in intelligent devices, generally in the form of the flexible cantilever element; thus, the analysis to the corresponding cantilever is of importance, especially when advanced mechanical properties of piezoelectric materials should be taken into account. In this study, the vibration problem of a piezoelectric cantilever beam with bimodular functionally-graded properties is solved via analytical and numerical methods. First, based on the equivalent modulus of elasticity, the analytical solution for vibration of the cantilever beam is easily derived. By the simplified mechanical model based on subarea in tension and compression, as well as on the layer-wise theory, the bimodular functionally-graded materials are numerically simulated; thus, the numerical solution of the problem studied is obtained. The comparison between the theoretical solution and numerical study is carried out, showing that the result is reliable. This study shows that the bimodular functionally-graded properties may change, to some extent, the dynamic response of the piezoelectric cantilever beam; however, the influence could be relatively small and unobvious.


Sign in / Sign up

Export Citation Format

Share Document