Effects of various interval training regimes on changes in maximal oxygen uptake, body composition, and muscular strength in sedentary women with obesity

2019 ◽  
Vol 119 (4) ◽  
pp. 879-888 ◽  
Author(s):  
Amy Clark ◽  
Annie B. De La Rosa ◽  
Jamie L. DeRevere ◽  
Todd A. Astorino
2013 ◽  
Vol 113 (9) ◽  
pp. 2361-2369 ◽  
Author(s):  
Todd A. Astorino ◽  
Matthew M. Schubert ◽  
Elyse Palumbo ◽  
Douglas Stirling ◽  
David W. McMillan ◽  
...  

Author(s):  
Jing Hu ◽  
Zhen Wang ◽  
Bingkai Lei ◽  
Junping Li ◽  
Ruiyuan Wang

The low-carbohydrate high-fat (LCHF) diet has recently been subject to attention on account of its reported influences on body composition and physical performance. However, the combined effect of LCHF with high-intensity interval training (HIIT) is unclear. A systematic review and meta-analysis were conducted to explore the effect of the LCHF diet combined with HIIT on human body composition (i.e., body weight (BM), body mass index (BMI), fat mass (FM), body fat percentage (BFP), fat-free mass (FFM)) and maximal oxygen uptake (VO2max). Online libraries (PubMed, Web of Science, EMBASE, Cochrane Library, EBSCO, CNKI, Wan Fang) were used to search initial studies until July 2021, from which 10 out of 2440 studies were included. WMD served as the effect size with a confidence interval value of 95%. The results of meta-analysis showed a significant reduction in BM (WMD = −5.299; 95% CI: −7.223, −3.376, p = 0.000), BMI (WMD = −1.150; 95% CI: −2.225, −0.075, p = 0.036), BFP (WMD = −2.787; 95% CI: −4.738, −0.835, p = 0.005) and a significant increase in VO2max (WMD = 3.311; 95% CI: 1.705, 4.918, p = 0.000), while FM (WMD = −2.221; 95% CI: −4.582, 0.139, p = 0.065) and FFM (WMD = 0.487; 95% CI: −3.512, 4.469, p = 0.814) remained unchanged. In conclusion, the LCHF diet combined with HIIT can reduce weight and fat effectively. This combination is sufficient to prevent muscle mass loss during LCHF, and further enhance VO2max. Further research might be required to clarify the effect of other types of exercise on body composition and physical performance during LCHF.


2010 ◽  
Vol 34 (S34) ◽  
pp. 485-490 ◽  
Author(s):  
C. F. KEARNS ◽  
K. H. McKEEVER ◽  
H. JOHN-ALDER ◽  
T. ABE ◽  
W. F. BRECHUE

2019 ◽  
Vol 14 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Andrew J. Carnes ◽  
Sara E. Mahoney

Purpose: This study longitudinally compared changes in running performance (5-km time trial) and fitness (maximal oxygen uptake [VO2max] and body composition [BC]) between polarized training and CrossFit Endurance (CFE) in recreational runners. Methods: Participants (N = 21) completed 12 wk of CFE or polarized endurance training (POL). Both groups trained 5 d·wk−1. POL ran 5 d·wk−1, whereas CFE ran 3 d·wk−1 and performed CrossFit 3 d·wk−1 (run + CrossFit 1 d·wk−1). Intensity was classified as low, moderate, or high (zone 1, 2, or 3) according to ventilatory thresholds. POL was prescribed greater volume (295 [67] min·wk−1), distributed as 85%/5%/10% in Z1/Z2/Z3. CFE emphasized a lower volume (110 [18] min·wk−1) distribution of 48%/8%/44%. Results: POL ran 283 (75.9) min·wk−1 and 47.3 (11.6) km·wk−1, both exceeding the 117 (32.2) min·wk−1 and 19.3 (7.17) km·wk−1 in CFE (P < .001). The POL distribution (74%/11%/15%) had greater total and percentage Z1 (P < .001) than CFE (46%/15%/39%), which featured higher percentage Z3 (P < .001). Time trial improved −93.8 (40.4) s (−6.21% [2.16%]) in POL (P < .001) and −84.2 (65.7) s (−5.49% [3.56%]) in CFE (P = .001). BC improved by −2.45% (2.59%) fat in POL (P = .02) and −2.62% (2.53%) in CFE (P = .04). The magnitude of improvement was not different between groups for time trial (P = .79) or BC (P = .88). Both groups increased VO2max (P ≤ .01), but with larger magnitude (P = .04, d = 0.85) in POL (4.3 [3.6] mL·kg·min−1) than CFE (1.78 [1.9] mL·kg·min−1). Conclusions: Recreational runners achieved similar improvement in 5-km performance and BC through polarized training or CFE, but POL yielded a greater increase in VO2max. Extrapolation to longer distances requires additional research.


1985 ◽  
Vol 56 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Priscilla M. Clarkson ◽  
Patty S. Freedson ◽  
Betsy Keller ◽  
David Carney ◽  
Margaret Skrinar

CHEST Journal ◽  
2003 ◽  
Vol 124 (4) ◽  
pp. 1494-1499 ◽  
Author(s):  
Agnés Vinet ◽  
Stéphane Mandigout ◽  
Stéphane Nottin ◽  
LongDang Nguyen ◽  
Anne-Marie Lecoq ◽  
...  

2018 ◽  
Vol 43 (10) ◽  
pp. 1059-1068 ◽  
Author(s):  
James P. Raleigh ◽  
Matthew D. Giles ◽  
Hashim Islam ◽  
Matthew Nelms ◽  
Robert F. Bentley ◽  
...  

The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O2max) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O2max, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O2max and changes in central (cardiac output) and peripheral (arterial–mixed venous oxygen difference (a-vO2diff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided into tertiles on the basis of the magnitude of their individual V̇O2max responses, and differences in central and peripheral adaptations were examined in the top (HI; ∼10 mL·kg−1·min−1 increase in V̇O2max, p < 0.05) and bottom (LO; no change in V̇O2max, p > 0.05) tertiles (n = 8 each). Training had no impact on maximal cardiac output, and no differences were observed between the LO group and the HI group (p > 0.05). The a-vO2diff increased in the HI group only (p < 0.05) and correlated significantly (r = 0.71, p < 0.01) with changes in V̇O2max across all participants. Muscle capillary density (p < 0.02) and β-hydroxyacyl-CoA dehydrogenase maximal activity (p < 0.05) increased in both groups, with no between-group differences (p > 0.05). Citrate synthase maximal activity (p < 0.01) and type IIA fibre composition (p < 0.05) increased in the LO group only. Collectively, although the heterogeneity in the observed V̇O2max response following 4 weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent V̇O2max responses in the LO and HI groups.


Sign in / Sign up

Export Citation Format

Share Document